Exercise Problem Sets 8
Nov. 04. 2022

Definition 0.1. Let (M, d) be a normed vector space, and A be a subset of M.

1. A point x € M is called an accumulation point of A if there exists a sequence {x,}>_; in

A\{z} such that {x,}> , converges to x.

2. A point x € A is called an isolated point (7% = ) (of A) if there exists no sequence in A\{z}

that converges to x.

3. The derived set of A is the collection of all accumulation points of A, and is denoted by A’.

Problem 1. Let (M,d) be a metric space, and A be a subset of M. Show that A 2 A’ if and only
if A is closed.

Proof. “<” Note that 2 of Problem 5 of Exercise 7 implies that A 2 A’; thus if A is closed,
A=ADA"

“=” In 2 of Problem 5 of Exercise 7, we establish that A = A U A’. Therefore, if A 2 A’, we have
A= AuU A’ = A which shows that A is closed. =

Problem 2. Show that the derived set of a set (in a metric space) is closed.

Proof. Let (M,d) be a metric space, and A be a subset of M. The goal is to show that A’ is closed
(and this is equivalent of showing that (A’)" is open). Let y ¢ A’. Then there exists ¢ > 0 such that

B(y,e) n (A\{y}) = (Bly, e\ {y}) n A= .
Then A < (B(y,e)\{y})". Since
(Bly.o\My}) = (Bly.e) n {y)°)" = Bly.e)* U {y}

(Bl(y, es)\«{y})C is closed. Therefore, Theorem 3.5 in the lecture note implies that

Ac (B(y,e)\{y})c or equivalently, A n B(y,e)\{y} =& .
Since A = A U A’ the equality above implies that

A0 B(y,e)\{y} = ;

thus the fact that y ¢ A" implies that B(y,e) n A" = &. O

Problem 3. Let A < R™. Define the sequence of sets A™ as follows: A©® = A and At =
the derived set of A for m € N. Complete the following.

1. Prove that each A™ for m € N is a closed set; thus AN 2 A®) o...,



2. Show that if there exists some m € N such that A is a countable set, then A is countable.

w

. For any given m € N, is there a set A such that A™ = ¢f but Am+t1) = &?

0
4. Let A be uncountable. Then each A(™) is an uncountable set. Is it possible that () A" = ¢¥?

m=1

ot

. Let A= {% + % ‘m —1>k(k—1),m,ke N}. Find AW, A® and A®),

Proof. 1. See Problem @ for that A’ is closed for all A € M. Moreover, Problem m shows that A 2 A’
if A is closed (in fact, A is closed if and only if A 2 A’). Therefore, knowing that A™) is closed
for all m € N, we obtain that A 2 A+ for all m e N.

2. Note that A\A’ consists of all isolated points of A. For m € N, define B~ = A(m=1\ A(m),
Then B~ consists of isolated points of A™~1: thus BY is countable for all m € N. Since

for any subset A of M, we have
Ac (AA)uU A

and equality holds if A is closed, 1 implies that

AcC (A\A(l)) u AL = O, A0 — BO) [(A(l)\A(Q)) U A(Q)} — BO , BM , A®
—...=BO , W) ... Bm=1) , glm)

If At is countable, we find that A is a subset of a finite union of countable sets; thus A is

countable.

4. By 2, if A is countable for some m € N, then A is countable; thus if A is uncountable, A™

must be uncountable for all m € N.

e}
5. For each k € N, let B;, = {i + % ‘m —1>k(k—1),m,ke N}. Then A = | J By. Moreover,
m k=1
for each k e N,
B ! + ! d inf B !
su =+ = an n = —;
PoR =3~ +2 & HEEE =
thus sup Byy1 < inf By, for each k € N. Therefore, By, is on the left of By for each k € N. We

also note that every element in A is an isolated point of A.

Suppose that {z,}°, is a convergent sequence in A.

(a) Suppose that there exists k € N such that {n e N ‘ Ty € Bk} = o0. Then lim z,, € By.
n—0o0

(b) Suppose that for all £ € N we have {n eN ‘ Ty € Bk} < 0. Then there exists a subsequence
{n; 172, of {zn}i, satisfying that z,, , < z,, for all j € N. Such a subsequence must
converge to 0 since for each k& € N only finitely many terms of z,, belongs to the set
By U By U -+ - U By, while the supremum of the rest of the subsequence is not greater than

111ka



Therefore, by the fact that By, = By, U {%}, we find that

A:Au{%‘keN}u{O}.

Then the fact that every point in A is an isolated point of A implies that

_ 1
A" = A\ collection of isolated point of A = {E ‘ ke N} v {0} .

Noting that every point of A’ except {0} is an isolated point of A’, we have A = {0} so that
AB) = .

3. Following 5, we have a clear picture how to construct such a set. Let

1 1 1 . .. .
Am:{7+7‘|’"'+7 ijeNandzj+1—1>zj(zj—1)foralllgjém}.
1 2 m

Then A’ = Ap_y U {0}, AD = Apy 0 {0}, -+, AR = A, 0 {0} if m > Fk,
A%n) = {0} and Aﬁ,ﬁ”“) = .

Problem 4. Recall that a cluster point = of a sequence {z,}°_, satisfies that

Ve>0,#{neN|z, e B(z,e)} =m.

Show that the collection of cluster points of a sequence (in a metric space) is closed.

Proof. Let (M,d) be a metric space, {zy}; be a sequence in M, and A be the collection of cluster
points of {z;}? ;. We would like to show that A 2 A.

Let y € A'. Then y is not a cluster point of {x3}7_,; thus

Je>03#{neN|z, e B(y,e)} <.

For z € B(y,e), let r = ¢ —d(y,z) > 0. Then B(z,r) < B(y,¢) (see Figure m or check rigorously
using the triangle inequality). As a consequence, #{n eN | x, € B(z, 7’)} < oo which implies that
z¢ A

N s /
NE

v e—d(y,z)

Figure 1: B(z,e —d(y,z)) < B(y,¢) if z € B(y,¢)

Therefore, if z € B(y,¢) then z € A% thus B(y,e) n A = . We then conclude that if y € A then
yé¢ A.

[m]



Problem 5. Let (V.| - |) ba a normed vector space, and C' be a non-empty convex set in V.
1. Show that C is convex.

2. Show that if € C and y € C, then (1—N)z+ Ay € C for all A € (0,1). This result is sometimes

called the line segment principle.
3. Show that C' is convex (you may need the conclusion in 2 to prove this).
4. Show that cl(C)) = cl(C).
5. Show that int(C) = int(C).

Hint: 2. Prove by contradiction.
3 and 4. Use the line segment principle.
5. Show that z € int(C) can be written as (1 — Ay + Az for some y e C and z € B(z,¢) < C.

Proof. 1. Let z,y e C and 0 < A < 1 be given. Then there exist sequences {x;}7_, and {y,}7,
in C' such that @y — x and y, — y as k — . Since C is convex, (1 — Nz + \y, € C
for each k € N; thus by the fact that C < C, (1 — A& + Ay, € C for each k € N. Since
(1—Nxp + Ay, — (1 — Nz + Ay as k — o and C is closed, we must have (1 — \)z + \y € C;

thus C' is convex if C is convex.

2. Suppose the contrary that there exists A € (0, 1) such that (1 — \)x + Ay ¢ C. Then for each
k € N, there exists z; ¢ C' such that

1
H(l—)\)m+)\y—zkH<% VkeN.
Since y € C, there exists a sequence {y,};°, € C satisfying
1
lyr =9l < . VheN.
Therefore, if k € N,

2
[ =Nz + Ay, — 2] < |1 =Nz + Ay — 2 + [ My — 3] < %0

thus \ 5
2k — A\Yy,
— keN.
lo= == I <3a=n ke
Since x € CO’, there exists N > 0 such that B(:z:, (1—2>\)N) c (' thus zkl%)\)\yk e C' whenever
k = N. By the convexity of C,
—A
zk:(l—/\)%—l—/\yke(],

a contradiction.



3. Let @,y € C. By the line segment principle, (I-=Nz+Mye C for all A e (0,1) (since CcC
so that y € C). This further implies that (1 — A)z + Ay € C for all A € [0,1] since @,y € C;

thus C' is convex.

4. Tt suffices to show that cl(C)) 2 cl(C). Let @ € cl(C). Pick any y € C. By the line segment
principle,
mkE(l—%)w—%%yeé Vk>=2.
Since @, — x as k — o0, we find that z € cl(C).

5. It suffices to show that int(C') < int(C). Let x € int(C'). Then there exists ¢ > 0 such that
B(z,e) < C. Let y € int(C). If y = @, then x € int(C). If y # =z, define z = =+ a(z — y),
where

£

o= ——".
2|z - y]

Then ||z — z| = %; thus z € B(z,¢) which further implies that z € C. By the line segment
principle implies that (1 — Ay + Az € C for all A e (0,1). Taking A = H%’ we find that

(1-=Ny+Arz= y+ (z+a(z—y) ==

(@
I+« I+a
which shows that x € int(C). o

Problem 6. Let (V, |- |) be a normed vector space. Show that for all x € V and r > 0,
int(B[z,r]) = B(z,7).
Is the identity above true in general metric space?
Proof. Let y € V such that | — y| = 7. Then =+ Ay — z) € B[z, r|* for all |A\| > 1. In particular,
y,=x+ (1+ l)(y — ) € B[z, r]* for all n € N. Moreover,
n
v —yl = le—yl =2 =0 as n—w

Therefore, lim y, = y which implies that y € 0 B[z, r] (since y € Bz, 7] and y is the limit of a
n—0oo

sequence from Bz, r]c); thus
{ye V’ lz—y| = 7“} < 0Bz, r].

On the other hand, B(z,r) is open and Blz,r] = B(z,r) u{y e V||z— y| = r}. Therefore, B(z,r)
is the largest open set contained inside Bz, r]; thus B(x,r) = int(B|z, 7]).

The identity is not true in general metric space. For example, consider the metric space (M, dy),
where dj is the discrete metric on set M. For each x € M, B(z,1) = {x} but Bz, 1] = M. Since M
is open, int(M) = M; thus int(B[z, 1]) # B(z,1) as long as #M > 1. o



Problem 7. Let M,,.,, denote the collection of all n x n square real matrices, and (Muxn, || - [Ip.q)

be a normed space with norm | - |,, given in Problem 6 of Exercise 5. Show that the set
GL(n) = {A € My, | det(A) # 0}

is an open set in M,,,,. The set GL(n) is called the general linear group.

Proof. Let A € GL(n) be given. Then A~! € M,,,, exists; thus
A7 )y < JA7 22l VazeR™

which, using the fact that A : R"i»R", implies that

onto

1 — n
HA_1H22H$H2 < HA515”2 VaeeR".
Let r = HA—11H For B € B(A,r), we have |A — B|22 < r; thus for each & € R,
2.2
1
rlzly = ———lzl2 < |Az|r: < [(A = B)z|z + [ Bzl < [A — Bl22|z|z: + | Bz]2
A=Yz

which further implies that
|Baly > (r— |4~ Bloo)zl.  VeeR".
Therefore, Bx = 0 if and only if & = 0 which shows that B is invertible; thus we established that

for each A € GL(n), there exists r = > 0 such that B(A,r) < GL(n).

ot
A= 2,2
This shows that GL(n) is open. o

Problem 8. Show that every open set in R is the union of at most countable collection of disjoint
open intervals; that is, if U < R is open, then
U= U(ak, bk) s
keZ
where Z is countable, and (ax, bx) N (ag, b)) = & if k # £.
Hint: For each point x € U, define L, = {y € ]R‘ (y,x) < U} and R, = {y € R‘ (r,y) < U}. Define
I, = (inf L,,sup R,). Show that I, = I, if (z,y) € U and if (z,y) $ U then I, n [, = J

Proof. As suggested in the hint, for each point z € U we define L, = {y e R ’ (y,x) < U} and
R, = {y € R| (x,y) < U}. We note that a = inf L, ¢ U since if a € U, by the openness of U there
exists r > 0 such that (a —r,a +r) < U which implies that (¢ —r,z) < U so that a —r € L,, a
contradiction to the fact that a = inf L,. Similarly, sup R, ¢ U. Therefore, I, = (inf L,,sup L) is
the maximal connected subset of U containing x.

If 2,y e U and (x,y) < U, then (L,,y) = (Ly,z) v {z} U (x,y) < U which implies that L, < L,,.
On the other hand, if z € L,, then z < 2 and (z,z) < U; thus L, < L, which implies that L, = L,
if z,y € U and (z,y) < U. This shows that I, = I, if z,y € U and (z,y) < U. Moreover, if z,y € U
but (z,y) € U, then there exists < z < y such that z ¢ U; thus sup R, < z < inf L, which implies
that I, n I, = J. Therefore, we establish that



1. ifx,y e U and (z,y) < U, then I, = I,.
2. ifz,ye U and (x,y) € U, then I, n I, = .

This implies that U is the union of disjoint open intervals. Since every such open interval contains a
rational number, we can denote each such open interval as [, where £ belongs to a countable index
set Z. Write I, = (ag, by), then U = | (a, b,). O

kel

Problem 9. Let (M,d) be a metric space. A set A < M is said to be perfect if A = A’ (so that
there is no isolated points). The Cantor set is constructed by the following procedure: let Ey = [0, 1].

1 2 . .
Remove the segment (g, §)’ and let E; be the union of the intervals

Remove the middle thirds of these intervals, and let Ey be the union of the intervals

0,51 o2l 5 2] [0 1.

Continuing in this way, we obtain a sequence of closed set Ej such that
(a) E12E22E22"';

(b) FE, is the union of 2" intervals, each of length 37".

0
The set C' = () E, is called the Cantor set.

n=1

1. Show that C'is a perfect set.
2. Show that C is uncountable.
3. Find int(C).

Proof. 1. Let x € C. Then x € Ey for some N € N. For each n € N, E,, is the union of disjoint closed

1
intervals with length T and 0 F, consists of the end-points of these disjoint closed intervals
1
gN—T+n"
Since 0E,, < C for each n € N, we find that {z,}>, € C\{z}. Moreover, lim z, = x; thus
n—0oo

whose union is F,. Therefore, there exists z,, € 0 Enin—1\{z} such that |z, — x| <

x € C" which shows C' < (". Since C' is the intersection of closed sets, C' is closed; thus

CcC'cC=0C

N

so we establish that C' = C.

2. For z € [0, 1], write x in ternary expansion (

Ji
(s
E

pu|
E
-
=
o

=
\'5 )



Here we note that repeated 2’s are chosen by preference over terminating decimals. For example,

we write % as 0.02222 .- instead of 0.1. Define
A= {I’ = O.dldeg"' ‘d] € {072} for aHjEN}

Note each point in 0 E, belongs to A; thus A € C. On the other hand, A has a one-to-one

correspondence with [0,1] (z = 0.didy--- € A < y = 0. %% -+ € [0,1], where y is expressed

in binary expansion (= i& /& B ) with repeated 1’s instead of terminating decimals). Since
[0, 1] is uncountable, A is uncountable; thus C' is uncountable.

3. If int(C) is non-empty, then by the fact that int(C') is open in (R, |-|), by Problem 7 the Cantor
set C' contains at least one interval (z,y). Note that there exists N > 0 such that |z —y| <3
for all n = N. Since the length of each interval in F,, has length — we find that if n > N, the

interval (x,y) is not contained in any interval of FE,. In other words, there must be z € (z,y)
such that z € E' which shows that

0
(x,y) € () En. Therefore, int(C) = &. D

n=1

Problem 10. Let V be a vector fields over F, where F = R or C, and {e;, ey, -+ ,e,} €V is a basis

for V; that is, every @ € V can be uniquely expressed as

Define ||, = ( > |x(i)’2>§.
=1
1. Show that || - |2 is a norm on V.
2. Show that K is compact in (V,| - |2) if and only if K is closed and bounded.

Proof. 1. By Cauchy-Schwarz inequality.

n .
2. It suffices to show the “if” direction. Let {x};2; be a sequence in K. Write o, = Y| :E,(;)ei.
i=1
Since {z;};~, is bounded, there exists M > 0 such that

lze|s <M VkeN.

:1:,(;)‘ < M for all k e Nand 1 < ¢ < n; thus for each 1 < 7 < n, {:Ek)}k .
a bounded sequence in F. By the Bolzano-Weierstrass Theorem (treat C as R? to apply the

Therefore,

theorem), there exists a subsequence {z,}72, such that {x,(;)}jo: converges to some z() € F.

Let = (2, z®, ... 2™). Then

" A . 1
Hmkj - sz = (Z ’ZL‘]SJ) _[L‘(Z)‘2>2 —0 as j — w;
i=1

thus the closedness of K implies that ¢ € K. =

1



Problem 11. Let (M, d) be a metric space.
1. Show that a closed subset of a compact set is compact.
2. Show that the union of a finite number of sequentially compact subsets of M is compact.

3. Show that the intersection of an arbitrary collection of sequentially compact subsets of M is

sequentially compact.

Proof. 1. Let K be a compact set in M, F' be a closed subset of K, and {z}}{2,; be a sequence
in F. Then {z;}}?, is a sequence in K; thus the sequential compactness of K implies that
there exists a convergent subsequence {xy,}7, with limit x € K. Note that {z;,}7, itself is a

convergent sequence in F; thus the limit z of {z,}32, belongs to F' by the closedness of F.

N
2. Let Ky, Ky, -+, Ky be compact sets, and K = | J Ky, and {z,,};°; be a sequence in K. Then
=1

there exists 1 < o < N such that
#{neN|z, € K;} = 0.

Let {z, }72, < K. By the compactness of Ky, there exists a convergent subsequence
{a:nkj }j.ozl of {z,, }{, with limit z € K,, < K. Since {xnk]_ }jozl is a subsequence of {z,}*_;, we
conclude that every sequence in K has a convergent subsequence with limit in K; thus K is

compact.

3. Since every compact set is closed, the intersection of an arbitrary collection of compact sets of
M is closed. By 1, this intersection is also compact since the intersection is a closed set of any

compact set (in the family). o

Problem 12. Given {ax};>; < R a bounded sequence, define
. 0 .
A= {:c eR ’ there exists a subsequence {akj }j=1 such that le% ap; = x} )

Show that A is a non-empty sequentially compact set in R. Furthermore, limsupa;, = sup A and
h/?iglf ap, = inf A. o

Proof. Note that A is the collection of cluster points of bounded sequence {ay}2;; thus Problem 3 of
Exercise 7 shows that A is closed. Moreover, A is bounded since {ay}}~; is bounded; thus sup A € A

and inf A € A. The desired result then follows from the fact that limsup a, is the largest cluster

k—0o0
point of {a;}y, and li;n inf ay, is the least cluster point of {ay};”; thus limsupay = sup A € A and
- k—00
liminfa, = inf A € A. o
k—o0

Problem 13. Let d : R? x R? — R be defined by

1 — Y it zo = yo,
d(z,y) = | | ) where x = (21, 29) and y = (y1,y2)-
o1 — 1|+ |wo —yo| + 1 ifzg # 5y,

Problem 12 of Exercise 5 shows that d is a metric on R?. Consider the metric space (R?, d).



1. Find B(z,r) with r <1, r =1 and r > 1.
2. Show that the set {c} x [a,b] = (R?d) is closed and bounded.

3. Examine whether the set {c} x [a,b] < (R? d) is sequentially compact or not.

e 6}
Problem 14. Let /2 be the collection of all sequences {z;}3°; < R such that Y. |z;|* < 0. In other
k=1

words,

o0
0* = {{zi}j2, |zr e R for all k € N, Z |2i]* < o0}

k=1
Define | - |2 : 2 — R by
0 1
[y = (X5 loel”) "

k=1
1. Show that || - ||z is @ norm on 2. The normed space (¢2, | - |) usually is denoted by ¢2.
2. Show that | - |2 is induced by an inner product.
3. Show that (¢2| - |2) is complete.
4. Let A= {ze ?||z|; <1}. Is A sequentially compact or not?

Proof. 1. Let {x}7, and {yx};2, be elements in £2 and ¢ € R. Clearly |{z4};2,| = 0 and |[{z};2,| =

0 if and only if z;, = 0 for all £ € N. Moreover,

lefwrbal, = lemnd], = (i ) = |c|(§ ) = lell ol

Finally, since the 2-norm for R" is a norm, we must have
n 1 n % n %
2
(D loe+wel?)” < (D) + (X wl?)
k=1 k=1 k=1
Passing to the limit as n — oo, we find that

n 1
{zryies + {udiza | = o + udisa |, = lim <];1 |2y, + yk|2> ’

< s [( X )+ (X ) ] = Mokl + Jon 2ol

n—o0
Therefore, the triangle inequality for || - |2 holds.

2. The norm | - |2 is indeed the norm induced by the inner product

Harbio Aubie) = D e {oedis (uie, € €.



3. Let {z}, be a Cauchy sequence. Write x; = {mék)};il. Then for each ¢ € N the sequence

{xék)},;‘ozl is a Cauchy sequence in R. In fact, for a given € > 0, there exists N > 0 such that
|€y, — @,|2 <& whenever m,n >N

which implies that for each ¢ € N,

‘xé mgn | < | — ®a]2 <& whenever m,n > N.
By the completeness of R, klim xék) = xy exists for each ¢ € N. Define & = {z,}2;.
—00

Claim: x € /2.

Proof of claim: By Proposition 2.58 in the lecture note, every Cauchy sequence is bounded;
thus there exists M > 0 such that |xy|, < M for all k£ € N. This implies that

Z‘xék)}zéMQ Vk,neN,;

thus
2 . .
Z]xg\ = kh—rjalo‘xz _,}L{&Z‘xl < VneN.
=1 =1
©¢]
Therefore, ||z|*> = > |z¢|*> < M? which implies that x € (2. o
=1

Next we show that {z}{, converges to x (in *). Let € > 0 be given. Since {z;}7, is a

Cauchy sequence, there exists N > 0 such that
€
[T — @2 < 5 whenever n,m > N .

Then similar to the proof of claim, for each r € N and n > N we have
Y (n) 2 : (n) (m),2 : s _ &
(;1 " = ] Z lim [y — ™ = lim 3 feg — 2P <l o - @l <

thus if n > N,
2
|20 — @3 = Y laf” @i < T <.
=1
Therefore, {x,}%_, converges to & so that we established that every Cauchy sequence in (¢2,||-2)

converges to a point in ¢2. This shows that (¢2,] - |2) is complete.

4. Consider the sequence {x}72, in ¢? given by that x;, = {xék)}zl with xék) = 0pp, where dpp

is the Kronecker delta. Then |zx|2 = 1 for all £ € N. On the other hand, if a subsequence of
{x)}72, converges, it must converge to the zero sequence (since xﬁk) = 0 for all ¢ except ¢ = k)

so that lim HazkHQ = 0, a contradiction. o
j—00



Problem 15. Let A, B be two non-empty subsets in R"™. Define
d(A,B) =inf{|z —y|l |z € A,y € B}

to be the distance between A and B. When A = {z} is a point, we write d(A, B) as d(z, B) (which

is consistent with the one given in Proposition 3.6 of the lecture note).
(1) Prove that d(A, B) = inf{d(z, B) |z € A}.
(2) Show that |d(z1, B) — d(z2, B)| < |z1 — 2> for all 21,2, € R™.

(3) Define B. = {x € R"|d(z, B) < €} be the collection of all points whose distance from B is less
than €. Show that B. is open and () B. = cl(B).

e>0

(4) If A is sequentially compact, show that there exists x € A such that d(A, B) = d(z, B).

(5) If A is closed and B is sequentially compact, show that there exists z € A and y € B such that
d(A, B) = d(z,y).

(6) If A and B are both closed, does the conclusion of (5) hold?

Proof. The proof of (1)-(4) does not rely on the structure of (R", | - [|2), so in the proofs of (1)-(4)

we write d(x, y) instead of | — y].

(1) Define f: Ax B— R by f(a,b) =d(a,b). By Problem 77,

ot o000 = inf (2 S(0.0)) = jnf (1nf 7(a. ).
Since gngf(a, b) = d(a, B), we conclude that
€

d(A, B) = (&bgwf(a, b) = inf d(a, B).

(2) Let @,y € R" and £ > 0 be given. By the definition of infimum, there exists z € B such that
d(z,B) < d(x,z) <d(xz,B) +¢.
By the definition of d(y, B) and the triangle inequality,
d(y,B) <d(y,z) <d(y,z) +d(z, z) < d(x,y) + d(z, B) + ¢;

thus

A symmetric argument (switching  and y) also shows that d(zx, B) — d(y, B) < d(=,y) + .
Therefore,
‘d(wa B) o d(y> B)} < d(‘”a y) te.

Since € > 0 is given arbitrarily, we conclude that

‘d(m,B) — d(y, B)‘ <d(z,y).



(3)

Let € B.. Define r = ¢ — d(x, B). Then r > 0; thus there exists z € B such that

d(z, B) < d(x, z) < d(z, B) + g —c.

Therefore, if y € B(:l:, g), then

d(y,z) <d(y,x) +d(z, z) < g—%—d(w,B) —l—g =d(x,B)+r=c¢
which shows that B(a:, g) € B.. Therefore, B. is open.
Next, we note that

d(z.B)=0 < (Ve>0)(d(z,B)<e) = (Ve>0)(zeB.) < zeB.;

e>0
thus d(x, B) = 0 if and only if z € (") B.. By Proposition ??, we conclude that () B. = B.
e>0 e>0

By the definition of infimum, for each n € N there exists a,, € A such that
A(A, B) < d(a,, B) < d(A, B) + -

Since A is compact, there exists a convergent subsequence {ay,}72, of {a,};_, with limit a € A.

By the Sandwich Lemma,
d(a,;,B) — d(A,B) as j— ©.
On the other hand, (2) implies that
|d(a,,, B) — d(a, B)| < d(ay,,a) >0 as j — .
Therefore,
d(a, B) — d(A, B)| < |d(a, B) — d(ay,, B)| + |d(a,,, B) — d(A,B)| - 0 as j — «
which establishes the existence of @ € A such that d(a, B) = d(A, B) if A is compact.
By (4), there exists b e B such that d(A, B) = d(b, A). Let C = B[b,d(A, B) + 1] n A. Then
d(b,A) =d(b,C)

since every point € A\C satisfies that d(b, ) > d(A, B) + 1. On the other hand, the Heine-
Borel Theorem implies that C' is compact; thus (4) implies that there exists ¢ € C' such that
d(b,C) =d(b, c) = |b— c|. The desired result then follows from the fact that C' is a subset of
A (so that ce A).

Let A = {(z,y) € R?|zy > 1,z > 0} and B = {(z,y) € R*|zy < -1,z < 0}. Then A
and B are closed set since they contain their boundaries. However, since a = (ﬁ’ n) € A and
b — (—%,n) e Bforall neN, d(A,B) < d(a,b) = % for all n € N which shows that
d(A, B) = 0. However, the fact that A n B = ¢J implies that d(a,b) > 0 for all ae A and
b € B. Therefore, in this case there are no a € A and b € B such that d(A, B) = d(a, b). a



