Exercise Problem Sets 10
Nov. 18. 2022

Problem 1 (True or False). Determine whether the following statements are true or false. If it is

true,
1.

2.

10.

prove it. Otherwise, give a counter-example.

Every open set in a metric space is a countable union of closed sets.

Let A < R be bounded from above, then sup A e A’

An infinite union of distinct closed sets cannot be closed.

An interior point of a subset A of a metric space (M, d) is an accumulation point of that set.
Let (M, d) be a metric space, and A < M. Then (A") = A'.

There exists a metric space in which some unbounded Cauchy sequence exists.

Every metric defined in R” is induced from some “norm” in R".

There exists a non-zero dimensional normed vector space in which some compact non-zero

dimensional linear subspace exists.

There exists a set A < (0, 1] which is compact in (0, 1] (in the sense of subspace topology), but

A is not compact in R.

Let A < R™ be a non-empty set. Then a subset B of A is compact in A if and only if B is
closed and bounded in A.

Solution. 1. True. We note that the statement above is equivalent to that “every closed set in a

metric space is a countable intersection of open sets”. To see that this equivalent statement is
true, we let F' be a closed set. For each n € N, define

1

Un=J B ).
zeF
. . 1 . :
Then FF < U, (smce each point x € F belongs to the ball B(x, —)) Moreover, U, is open since
n

it is the union of open sets.

Q0
Claim: F' = [ U,.

n=1

a0
Proof of claim: Since FF < U, for all n € N, F < () U,; thus it suffices to shows that

n=1

o] o]
F 2 (N U, or equivalently, F* < [J U:. To see the inclusion, we let z € F* and use the

n=1 n=1
closedness of F' to find an ng € N such that B(z, i) c F°. This implies that d(z,y) > L for
no no
0
all y € F'; thus x ¢ U,,. Therefore, x € U,CL0 so that z € | J UL. D

n=1



10.

False. Let A be a collection of single point {a}. Then A is bounded from above and sup A = a
but A" = ¢J.

False. Consider the union of the family of closed sets {[3n —1,3n+1] ‘n € N}. We note that
for n # m the two sets [3n—1,3n+ 1] n [3m —1,3m+ 1] = J so that this family is a collection
Q0

of distinct set and | J[3n — 1, 3n + 1] is closed.

n=1

. False. Every point z in a discrete metric is the only point in the set B(x, 1) so that = ¢ B(x,1)’.

False. A counter-example can be found in 5 of Problem 3 in Exercise 8.
False. By Proposition 2.58 in the lecture note, every Cauchy sequence is bounded.

False. The discrete metric dy on R™ cannot be induced by a norm since every set in (R", dy)

is bounded but R" is unbounded in (R", | - |) for any norms | - || on R™.

False. Note that any non-zero dimensional linear subspace of a normed space is unbounded;
thus any non-zero dimensional linear subspace cannot be compact since a compact set must be
bounded.

False. By Theorem 3.77 in the lecture note, A is compact in (0, 1] if and only if A is compact
in R.

False. By Theorem 3.42 in the lecture note, it is true that B is compact in A then B is closed
and bounded in A; however, the reverse statement if not true. For example, if A= B = (0, 1),

then B is closed and bounded in A but B is not compact in R. O

Problem 2. Let (M, d) be a metric space, and A € M be a subset. Determine which of the following

statements are true.

1.

6.

7.

intA = A\0A.

. cl(A) = M\int(M\A).

int(cl(A)) = int(A).
cl(int(A)) = A.
d(cl(A)) = dA.
If A is open, then A € M\A.

If A is open, then A = cl(A)\0A. How about if A is not open?

Solution. 1. True. First we note that A € Aand A 0A = . Therefore,

Ac A\GA.



On the other hand, if x € A\0 A, by the fact that 0A = A n AL, we find that z is not a limit
point of A%; thus there exists r > 0 such that B(x,r) < (A")" = A. This Remark 3.3 in the
lecture note implies that z € A so that A\0A < A.

2. True. Note that = ¢ B if and only if there exists {z,}%, < B° such that lim z, = z.

n—00
Therefore,

veAs (I{z, )l c A (ggrolc r, =) < (I{a, ), < (M\A)) (T}EIolo Tp = T)
< x ¢ int(M\A) < x e M\int(M\A) .

3. False. Let A=1[0,1] nQ in (R,|-]). Then cl(A) = [0,1] and int(A) = & so that int(cl(A)) =
(0,1) # int(A).

4. False. Let A=[0,1] nQ in (R,|-]). Then int(A) = & so that cl(int(A)) = & # A.
5. False. Let A=[0,1] nQ in (R,|-]). Then A= [0,1] so that 0 A = {0,1} # 0 A.

6. True. If A is open, then every point x € A is an interior point so that = ¢ 0 A (if z € J A, then
there exists {z,}%_, A" such that lim z, = z so that z ¢ A).

n=1 —
n—00

7. True. By Proposition 3.13 in the lecture note, 0 A = A\fi; thus the fact that A = A shows
that A= A U dA. Since 0A N A = &, we find that A = A\QA.

If A is not open, the statement is false. For example, consider A = [0,1] in (R, |-|). Then A is
not open and A = [0,1] and 0 A = {0, 1} so that A\0A = (0,1) # A. o

Problem 3. Complete the following.

1. Find a function f :R? — R such that

lim lim f(z,y) and limlim f(z,y)
y

z—0 y—0 —0z—
exist but are not equal.

2. Find a function f : R? — R such that the two limits above exist and are equal but f is not

continuous.

3. Find a function f : R? — R that is continuous on every line through the origin but is not

continuous.

Problem 4. Complete the following.
RQ

is continuous.
T,y) — T

1. Show that the projection map f : (

2. Show that if U < R is open, then A = {(x, y) € R? ‘ T € U} is open.



3. Give an example of a continuous function f : R — R and an open set U < R such that f(U)

is not open.

Problem 5. Show that f: A — R™, where A € R", is continuous if and only if for every B < A,

f(el(B) n A) < cl(f(B)).

Proof. “=" Let B < A and y € f(cl(B) n A). Then there exists x € cl(B) n A such that y = f(z).
By the property of B, there exists a sequence {x,}*_; < B such that lim x,, = x. Since B C A4,

n—00

{z,}2 , < A; thus the continuity of f (at z) implies that

lim f(z,) = f(x).

n—o0

On the other hand, {f(z,)},", is a sequence in f(B), so the limit f(z) must belong to cl(f(B)).
Therefore, y = f(x) € cl(f(B)) which shows the inclusion f((cl(B) n A) < cl(f(B)).

43 7

<" Suppose the contrary that there exists a sequence {z,}> ; € A with limit z € A n A’ such that
lim f(x,) # f(x). Then there exists ¢ > 0 such that for all N > 0 there exists n > N such
n—a0
that | f(z,) — f(z)| = €. Let ny € N be such that | f(z,, — f(z)| > . Let no > ny such that

| f(zn,) — f(z)| = . Continuing this process, we obtain an increasing sequence {n;}?%2; such

that
| f(zn,) — flx)| = VjeN. (0.1)
Let B = {:cnj} Then x € B since lim z, = x (so that lim z,,, = :z:) On the other hand, (@)
n—00 Jj—00

implies that f(xz) ¢ cl(f(B)) since B(f(x),e) n f(B) = . Therefore,

f(el(B) n A) & cl(f(B)),
a contradiction. o
Problem 6. Let T : R™ — R™ satisty T'(z + y) = T'(z) + T'(y) for all z,y € R".
1. Show that T'(rxz) = rT'(x) for all r € Q and = € R™.

2. Suppose that 7' is continuous on R”. Show that 7T is linear; that is, T'(cx + y) = ¢T'(z) + T(y)
forall ce R, x,y € R™.

3. Suppose that T' is continuous at some point zy in R™. Show that 7" is continuous on R".
4. Suppose that T" is bounded on some open subset of R”. Show that T is continuous on R".

5. Suppose that T is bounded from above (or below) on some open subset of R". Show that 7" is

continuous on R"™.

6. Construct a T : R — R which is discontinuous at every point of R, but T'(z +vy) = T'(z) + T(y)
for all x,y e R.



Proof. 1. By induction, T'(kx) = kT'(x) for all kK € N. Moreover, T'(0) = T'(0 + 0) = T(0) + 7°(0)
which implies that 7'(0) = 0; thus 7'(0z) = 07'(z) and if k € N,

—kT(z) = —kT(2)+717(0) = —kT(x)+ T (kx+(—kx)) = —kT(x)+ T (kx)+T(—kx) = T(—kx) .

Therefore, T'(kx) = kT (z) for all k € Z and x € R™. Let r = % for some p,q € Z. Then for
r e R"™,
pT(rz) = T(pra) = T(qr) = ¢T(z)

which implies that T'(rz) = rT(z) for all r € Q and = € R".

2. Let z,y € R" and ¢ € R. Then there exists {c;}72,; € Q such that klim ¢, = c. This further
—00

implies that cyx — cx as k — oo since
lim |c,x — cz| = lim |(cx — ¢)x|| = |z| lim |cx —¢| =0
k—00 k—0o0 k—o0

Therefore, by the continuity of T,

T(ex+y)=T(cx)+T(y) = klgg; T(cpx) +T(y) = lim ¢, T(z) + T(y) = T (x) + T(y) .

k—0o0

3. Let a € R” and ¢ > 0 be given. By the continuity of T" at x, there exists o > 0 such that
|T(x — o) = |T'(z) — T(xg)|| <& whenever |z —z¢|<0.
The statement above implies that if |z < J, then |T'(z)| < €. Therefore,
|T(x) —T(a)| = |T(z —a)| <e whenever |z—al <o
which shows that 7" is continuous at a.

4. Suppose that T is bounded on an open set U so that T'(U) < B(0, M). Let zy € U. Then there
exists r > 0 such that B(zg,7) € U. Therefore, if x € B(0,7), then x + xy € B(xg,r) so that

1T ()| < [T(x+x0)| + | T(20)| < M+ |T(x0)| = R;
thus we establish that there exists » and R such that
|T(z)| < R whenever |z|<7r.

Let € > 0 be given. Choose c € Q so that 0 < ¢ < % For such a fixed ¢ € Q, choose 0 < § < cr.

1f ] < 8, then || < % < s thus if ] < 8, we have [T(%) | < & so that

IT(x)] = HT(%)H = [T (Z)| =T (E)| < cR <e.

Therefore, T' is continuous at 0. By 3, T is continuous on R".



5. Suppose that Tz < M (so that in this case m = 1) for all z € U, where U is an open set in R™.
Let zg € U. Then there exists r > 0 such that B(zg,r) < U; thus if z € B(0,r),

Te=T(x+x0) —T(x9) <M —T(x0) =R.
Therefore, we establish that there exist » and R such that
T(x) <R whenever xe B(0,r).

For z € B(0,r), we must have —x € B(0,r); thus

thus —R < T'(z) whenever z € B(0,r). Therefore, |T(x)| < R whenever x| <r. By 4, T is

continuous on R". o

Problem 7. Let (M, d) be a metric space, A< M, and f: A — R. For a € A’ define

liminf f(z) = 7ql_i)r(]§1+ inf{ f(z) |z € B(a,r) n A\{a}},

r—a

limsup f(z) = rl_i)r(r)1+ sup{f(z) |z € B(a,r) n A\{a}}.

r—a

Complete the following.

1. Show that both liminf f(z) and limsup f(z) exist (which may be +o0), and

T—a T—a

liminf f(z) < limsup f(z).

r—a r—a

Furthermore, there exist sequences {x,}%;, {y,}>; < A\{a} such that {z,}>_, and {y,}>,

both converge to a, and

lim f(z,) = liminf f(z) and li_r)go f(yn) = limsup f(z).

n—00 r—a T—a
2. Let {z,}°, < A\{a} be a convergent sequence with limit a. Show that

liminf f(z) < liminf f(z,) < limsup f(y,) < limsup f(x).

z—a n—0a0 n—00 Tz—a

3. Show that lim f(x) = ¢ if and only if

r—a

liminf f(z) = limsup f(z) = (.

T—a T—a

4. Show that liminf f(z) = ¢ € R if and only if the following two conditions hold:

r—a

(a) for all £ > 0, there exists § > 0 such that { — e < f(x) for all z € B(a,d) n A\{a};
(b) for all e > 0 and 0 > 0, there exists z € B(a,d) n A\{a} such that f(z) < {+e.



Formulate a similar criterion for limsup and for the case that ¢ = +oo.

5. Compute the liminf and limsup of the following functions at any point of R.
0 ifzxeQt,
(a) flz)=4 1

ifx:gwith(p,q):17q>0,p7&0.
p p

W= { % %

Proof. For r > 0, define m, M : A — R* by
m(r) = inf{f(z)|z € Bla,r) n A\{a}} and M(r)=sup{f(z)|z e Bla,r)n A\{a}}.
We remark that it is possible that m(r) = —oo or M(r) = 0. Note that m is decreasing and M is
increasing in (0, c0).
1. By the monotonicity of m and M, Tl_i)r(l)l+ m(r) and rl_i)r(% M(r) “exist” (which may be +00).

Moreover, m(r) < M(r) for all r > 0; thus lim m(r) < lim M (r) so we conclude that
r—0 r—0

liminf f(z) = lim m(r) < lim M(r) = limsup f(z).

r—a r—0+ r—0t+ r—a
Since liminf f(x) = —limsup(—f)(z), it suffices to consider the case of the limit superior.
T—a z—a

(a) If limsup f(x) = oo, then for each n € N there exists 0 < ¢,, < E such that

r—a n

M(r) =n whenever 0<r <9,.

By the definition of the supremum, for each n € N there exists z, € B(a, %") N A\{a}
such that f(z,) >n— 1.
(b) If limsup f(z) = L, then for each n € N there exists 0 < §,, < L such that
n

r—a

‘M(r) - L| < ! whenever 0 <r <d,.
n

By the definition of the supremum, for each n € N there exists z, € B(a, %") N A\{a}
such that . .
L——<f(z,) <L+ —.
n n

Since 6, — 0 as n — oo, we find that {z,}>, < A\{a} converges to a and lim f(z,) =

n—ao0
limsup f(z).

r—a

2. It suffices to show the case of the limit inferior. Let {z,}?*; < A\{a} and z,, — a as n — .
For every k € N, there exists Ny > 0 such that 0 < d(z,,a) < o whenever n > N,. W.L.O.G.,



we can assume that N, > k and Ny,; > Nj for all k£ € N. By the definition of infimum,

m(%) < f(z,) whenever n = Ny

which further implies that
m(%) < inf f(z,).

n=Np

Note that lim m(r) = lim m(%) and lim inf f(z,) = llm inf f(z,) (the latter follows from

r—0+ k—o0 k—00 n=Ny —n=k

. o . " . )
the fact that {nlzn]\f[k f ($n)} 4, 18 a subsequence of the ‘ convergent sequence { rlbg’f; f (xn)} 1 ),
we conclude that

liminf f(z) = lim m(r) = lim m(%) < lim inf f(z,) = lim inf f(x,) = liminf f(z,).

r—a r—0t+ k—o0 k—o0 n= Ny k—oo n=k n— 00
3. (=) Let € > 0 be given. There exists § > 0 such that
|f(z) —¢| <e whenever xe€ B(a,d)n A\{a}.

Therefore,
{—e< f(x) <l+e whenever z € B(a,d)n A\{a}

which implies that
l—e<m(0) < M(@O)<l+c¢e.

By the monotonicity of m and M, the inequality above implies that
(—e<m(0)<m(r) < M(r) < M(§) <l+e V0O<r<g.
Passing to the limit as » — 0, we find that

¢ — e < liminf f(z) < limsup f(z) <l +¢.

T—=a z—a

Since £ > 0 is chosen arbitrary, we conclude that liminf f(x) = limsup f(x) =

(<) Let {x,}2, < A\{a} be a sequence with limit a. Then 2 and the assumption that
liminf f(z) = limsup f(z) = ¢ imply that hm 1nff(xn) = limsup f(x,) = ¢. Therefore,

r—a n—0

lim f(z,) =¢.
n—aoo
4. (=) This direction is proved by contradiction.

(a) Suppose the contrary that there exists € > 0 such that for each n € N, there exists
T, € B(a, %) n A\{a} such that f(x,) <?¢—e. Then {x,}r_ ;A\{a} and hm Ty =
however,

liminf f(z,) < {—¢e < ¢ =liminf f(x),

n—aoo r—a

a contradiction to 2.



(b) Suppose the contrary that there exist ¢ > 0 and ¢ > 0 such that
flx)=l+¢ Va e B(a,0) n A\{a}.
Then m(0) = ¢ + ¢; thus the monotonicity of m implies that
(+ec<m(d) <m(r) whenever 0<r<9d.
Passing to the limit as » — 0", we conclude that

(+¢e < lim m(r) = liminf f(x),

r—0+ T—a
a contradiction.

(<) Let {z,}, < A\{a} be a sequence with limit a, and £ > 0 be given. Then (a) provides
d > 0 such that f(x) > ¢ — e whenever x € B(a,d) n A\{a}. For such § > 0, there exists
N > 0 such that 0 < d(x,,a) < 0 for all n > N. Therefore, if n > N, f(z,) > ¢ — ¢ which

implies that liminf f(x,) > ¢ — . Since € > 0 is chosen arbitrary, we conclude that
n—0o0

liminf f(z,) = ¢ for every convergent sequence {x,}_; < A\{a} with limit a.
n—0o0

On the other hand, using (b) we find that for each n € N, there exists z,, € B(a, %) nA\{a}
such that f(z,) < E—I—%. Then ligglff(zn) < ¢, and (i) further implies that hrrllliolclff(x”) =
¢; thus we establish that there exists a convergent sequence {z,}r_; < A\{a} with limit a
such that liminf f(z,) = ¢.

By 1 and 27;\: conclude that ¢ = liminf f(z).

r—a

5. (a) liminf f(z) = limsup f(z) = 0 for all a € R.

r—a T—a

(b) liminf f(z) = —|a|, limsup f(z) = |a|. In particular, lirr(l) f(z)=0. o

T—a T—a

Problem 8. Let (M,d) be a metric space, and A < M. A function f : A — R is called

liminf f(z) = f(a),

. . / r—a .
at a € A if either a € A\A’ or limsup £(x) < f(a), and is called

r—a

lower /upper semi-continuous on A if f is lower/uppser semi-continuous at a for all a € A.

lower semi-continuous
upper semi-continuous

1. Show that f : A — R is lower semi-continuous on A if and only if f~!((—o0, r]) is closed relative
to A. Also show that f : A — R is upper semi-continuous on A if and only if f~!([r, o)) is

closed relative to A.

2. Show that f is lower semi-continuous on A if and only if for all convergent sequences {z,}>_ , <

A and {s,}*, < R satisfying f(z,) < s, for all n € N, we have

f( lim xn) < lim s, .
n—ao0 n—o0



3. Let {fa}aer be a family of lower semi-continuous functions on A. Prove that f(z) = sup f,(x)
ael

is lower semi-continuous on A.

4. Let A be a perfect set (that is, A contains no isolated points) and f : A — R be given. Define

f*(x) = limsup f(y) and f«(x) = liminf f(y).

y—x y—-x
Show that f* is upper semi-continuous and f, is lower semi-continuous, and f,(z) < f(z) <
f*(x) for all x € A. Moreover, if g is a lower semi-continuous function on A such that g(x) <
f(z) for all x € A, then g < f,.

Proof. We first note that by 1, 2 and 4 of Problem H,

f A — Ris lower semi-continuous at a

< (Ve>0)36>0)(zeB(a,6) nA= f(z) > f(a) —¢) (0.2)
< (V{za}, < A) ( Jim x, = a = lim inf f(z,) > f(a)) .

We note that the first statement implies the second one because of 4(a) in Problem H, the second
statement implies the third one because of z,, € B(a,d) n A when n » 1, and the third statement

implies the first one because of 1 in Problem H

1. (=) It suffices to prove the case for limit inferior since limsup f(xz) = —liminf(—f)(z). We

r—a

note that F is closed relative to A if and only if E n A is a closed set in the metric space
(A, d). Therefore, a subset of E of A is closed relative to A if and only if every sequence
{z,}> | € F that converges to a point in A must also has limit in E.

Let 7 € R and {z,,}®_, be a sequence in E = f~((—o0,7]) such that {x,}*°_, converges to
a point a € A. Then f(a) < ligrii%lff(mn) < 7 which implies that a € f~((—o0,7]).

(<) Let a € A and € > 0 be given. Define r = f(a) —e. Then V = f~1((r,0)) is open relative
to A (since f~1((—o0,7]) is closed relative to A). Since a € V, there exists § > 0 such that
B(a,d) n A < V. This implies that

fla) —e < f(2) Vae B(a,0)nA.
Therefore, the equivalence (@) shows that f is lower semi-continuous at a.

2. (=) Let {x,};°_; be a convergent sequence in A with limit a, {s,}r_, be a real sequence with

limit s, and f(x,) < s, for all n € N. Suppose that f(a) > s. Let ¢ = f(a)2— ® Since f

is lower semi-continuous at a, liminf f(z) > f(a); thus there exists 6 > 0 such that
fla) —e < f(z) Ve Bla,0)nA.

On the other hand, there exists N > 0 such that z,, € B(a,0) n A and s,, < s+¢ whenever

n = N. Therefore, if n > N,
Sp<s+e=fla)—e< f(z,),

a contradiction.



(=) Let a € A, and {z,};., S A be a sequence with limit a. Let {x,,}72, be a subsequence
of {z,};2, such that lim f(z,,) = liminff(z,). Define s; = f(z,,). Then clearly
j—00 n—o0
f(:pnj) < s; for all j € N; thus by assumption

f(a) < lim s; = lim inf f(zn).

3. Let ae An A" and {z,}>, < A\{a} be a sequence with limit a. Then f,(x,) < f(z,) for all

n e N and o € I. Since f, is lower semi-continuous for each o € I, for a € I we have

fa(a) <liminf f,(x) < liminf f(x).

r—a r—a

The inequality above implies that

f(a) = sup fo(a) < liminf f(x);

ael T—a

thus f is lower semi-continuous at a.



