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Problem 1. Complete the following.
1. Show that if f: R™ — R™ is continuous, and B < R"™ is bounded, then f(B) is bounded.
2. If f: R — R is continuous and K < R is compact, is f~(K) necessarily compact?
3. If f:R — R is continuous and C' < R is connected, is f~*(C) necessarily connected?

Solution. 1. Since B is bounded, B is closed and bounded; thus the Heine-Borel Theorem implies
that B is compact. Since f : R* — R™ is continuous, f(B) is also compact; thus bounded.
The boundedness of f(B) then follows from the fact that f(B) < f(B).

2. No. For example, consider f : R — R given by f(z) = sinz and K = [-1,1]. Then K is
compact but f~1(K) is the whole real line so that f~(K) is not compact.

3. No. For example, consider f: R — R given by f(x) = 2 and C = [1,4]. Then C is connected
since it is an interval (Corollary 3.69 in the lecture note) but f~(C) = [-2,—1] U [1,2] which

is clearly disconnected. =

Problem 2. Consider a compact set K < R"” and let f : K — R™ be continuous and one-to-one.
Show that the inverse function f~!: f(K) — K is continuous. How about if K is not compact but

connected?

Proof. Let F be a closed subset of K. Then 1 of Problem 11 of Exercise 8 implies that F' is
compact. Therefore, f(F') is compact since f is continuous (Theorem 4.25 in the lecture note). Since
f(F) = (f~Y)~Y(F), we conclude that the pre-image of F' under f~! is compact; hence (f~1)~!(F)
is closed in f(K) for all closed sets F' < K. Therefore, Theorem 4.14 in the lecture note shows that
f~': f(K) — K is continuous.

However, f~!: f(K) — K is not necessarily continuous if K is connected. For example, consider
f:]0,27) — R? given by f(t) = (cost,sint). Then f is one-to-one but f=!: f([0,27)) — [0,27) is

not continuous at f(0) = (1,0) since the sequences {x,}>_,, {y, }>, given by
1 1 1 1
z, (cosn,smn) an y, = (cos (27 n),sm( m n))

both converges to (1,0) but f~!(z,) = % and f~!(y,) =27 — % so that

lim f~(x,) =0 # 27 = lim f'(y,). o
n—0o0

n—o0

Problem 3. Let (M,d) be a metric space, K < M be compact, and f : K — R be lower semi-

continuous (see Problem 8 of Exercise 10 for the definition). Show that f attains its minimum on
K.



Proof. Claim: there exists a sequence {z,}>_, such that lim f(z,) = in}f{ f(z).
n—o0 xre

Proof of claim: If in}f{f(x) € R, for each n € N there exists z,, € K such that
Te

. . 1
inf f(2) < f(za) < inf fla) + .
If 1nlf(f(x) = —oo, for each n € N there exists x,, € K such that f(z,) < —n. In either case,
xe
g ) = @) :

W.L.O.G. we can assume that f(x,) > in}f{ f(z) for all n € N (for otherwise we find that f attains
xTE
its minimum at some x,,). Let n; = 1, and for given ny, choose 1y, > ny such that f(x,,) > f(zn,,,)-

In this way we obtain a subsequence {z,, };>, of {x,}r_, satisfying that
;}1_{%3 f(2n,) = ;g{f(x) and f(xn,) = f(2n,,,) VEeN.

Since {z,,}i~, < K, by the compactness of K there exists a convergent subsequence {xnke}le of

{z,, }72,. Suppose that Klim Tn,, = a. Then by the fact that z,, # x,, for all k # ¢, we have
—00

#{leN|z,, =a} <1.

Therefore, up to deleting one term in the sequence we can assume that {xnke }Zl < K\{a}. In such

a case the lower semi-continuity of f implies that

lienlglff(xnkz) > liminf f(z) = f(a).

r—a

Since lim f(z,) = inf f(z), the inequality above implies that

n— 00 zeK

inf f(z) = lim inff(xnke) > lirriinff(x) > f(a) = inf f(x);

reK £—00 reK

thus f(a) = inf f(x). o

zeK

Problem 4. Let (M, d) be a metric space. Show that a subset A € M is connected if and only if

every continuous function defined on A whose range is a subset of {0, 1} is constant.

Proof. “=" Assume that A is connected and f : A — {0,1} is a continuous function, and § = 1/2.
Suppose the contrary that f~1({0}) # & and f~'({1}) # &. Then A = f~((-4,d)) and
B = f71((1 - 6,1+ 4)) are non-empty set. Moreover, the continuity of f implies that A and

B are open relative to A; thus there exist open sets U and V such that
fH=66)=UnA and f'((1-61+6)=VnA.
Then

(1) AnUNV =f1=60))nfH1-61+0)) =,
(2) AnU# Jand AnV # ),
(3) A< U uV since the range of f is a subset of {0, 1};



thus A is disconnect, a contradiction.
“<” Suppose the contrary that A is disconnected so that there exist open sets U and V such that
(1) AnUnNV =g, 2QA~NU#Z, B)AnNV =g, (4 AcUUV.

Let f: A — R be defined by

fz) = 0 ifzeAnU,
V=11 ifzednV.

We first prove that f is continuous on A. Let a € A. Thena € AnU orae AnV. Suppose that
a € AnU. In particular a € U; thus the openness of U provides r > 0 such that B(a,r) < U.
Note that if x € B(a,r) n A, then x € A < U, thus

f(z) = fla)) =0  VYazeBlar)nA

which shows the continuity of f at a. Similar argument can be applied to show that f is
continuous at ae An'V. =

Problem 5. Let |- | be a norm on R”, and f : R" — R be defined by f(z) = |z|. Show that f is
continuous on (R™, | - [|2).
Hint: Show that [f(z) — f(y)| < C|x — y] for some fixed constant C' > 0.

Problem 6. Let (V,| - |) be a normed vector fields over F, where F = R or C, and dim(V) < o0.
Show that a subset K of V is compact if and only if K is closed and bounded.
Hint: See Remark 3.43 in the lecture note for the case |- | = |- [|2, and the general case follows from

Example 4.29 in the lecture note.

In Exercise Problem H through @, we focus on another kind of connected sets, so-called path

connected sets. First we introduce path connectedness in the following

Definition 0.1. Let (M, d) be a metric space. A subset A € M is said to be path connected if for
every z,y € A, there exists a continuous map ¢ : [0,1] — A such that ¢(0) = z and ¢(1) = y.

Figure 1: Path connected sets

Problem 7. Recall that a set A in a vector space V is called convex if for all z,y € A, the line

segment joining x and y lies in A. Show that a convex set in a normed space is path connected.



Problem 8. A set S in a vector space V is called star-shaped if there exists p € S such that for
any g € S, the line segment joining p and ¢ lies in S. Show that a star-shaped set in a normed space

is path connected.

Proof. Suppose that there exists p € S such that for any ¢ € S, the line segment joining p and ¢ lies
in S. In other words, such p € S satisfies that

(I-XNg+IpcS VAel0,1]] and ge S.

Let x,y in S. Define
(1 —2t)z +2tp if0<t<

?

p(t) =

_ N

(2 2t)p + (2t — 1)y if%<t<

Then ¢ is continuous on [0,1] (since lim+ p(t) = lim ¢(t) = p so that ¢ is continuous at 0.5).
t—0.5 t—0.5—

Moreover, ¢([0,0.5]) = Zp and ¢([0.5,1]) = py so that ¢ : [0,1] — A is continuous with ¢(0) = x
and ¢(1) = y. Therefore, A is path connected. D

Problem 9. Let A = {(x, sin é) ‘ z € (0, 1]} U ({0} x [-1,1]). Show that A is connected in (R?, |- |2),
but A is not path connected.

Proof. Assume the contrary that A is path connected such that there is a continuous function ¢ :
[0,1] — A such that ¢(0) = (zo,yo) € {(a:,sin %) |z € (0, 1)} and ¢(1) = (0,0) € {0} x [-1,1]. Let
to = inf{t € [0,1]|¢(t) € {0} x [~1,1]}. In other words, at ¢ = t, the path touches 0 x [—1,1]
for the “first time”. By the continuity of ¢, p(tg) € {0} x [—1,1]. Since ¢(0) ¢ {0} x [—1,1],

P[0 t0)) < { (.50 3) |2 € (0, 1)},

Suppose that ¢(ty) = (0,7) for some y € [—1,1], and ¢(t) = (z(t),sin a:(lt)) for 0 <t < tp. By

the continuity of ¢, there exists 6 > 0 such that if |t —to| < 0, |¢(t) — ¢(to)| < 1. In particular,

1 2
t)? ( i ——*) <1 Vite (tg—0o,t).
x(t)” + Slnx(t) ] (to )
On the other hand, since ¢ is continuous, z(t) is continuous on [0, ¢); thus by the fact that [0,%y) is

connected, z([0, %)) is connected. Therefore, z([0,ty)) = (0, z] for some z > 0. Since lim z(t) = 0,

t—to

there exists {t,};2; € [0,¢y) such that ¢, — ¢, as n — o0 and |sin

t, € (to — 5, to) but

—g] > 1. Forn » 1,

1
z(tn)

1 2
W (s ) =,
x(ty,)” + Smx(tn) ]
a contradiction.

On the other hand, A is the closure of the connected set B = {(:L“,Sin %) ‘x e (0, 1)} (the

1
connectedness of B follows from the fact that the function i(z) = (:U,sin ;) is continuous on the

connected set (0, 1)) Therefore, by Problem 10 of Exercise 9, A = B is connected. D



Problem 10. Let (M, d) be a metric space, and A € M. Show that if A is path connected, then A

is connected.

Proof. Assume the contrary that there are non-empty sets A;, As such that A = A; U Ay but
Al nAy =A,n A = & Let v € A and y € A,. By the path connectedness of A, there exists
a continuous map ¢ : [0,1] — A such that p(0) = z and ¢(1) = y. Define I} = p~(4;) and
I, = ¢ 1(Ay). Then clearly 0 € I and 1 € I, and I, n I, = . Moreover,

0,1 =p (A =p (A uvd)=p H{A)up (A) =L ul.

Claim: [ nLh=Lnl =J.
Suppose the contrary that ¢t € I; N I;. Then ¢ € ¢(A;) which shows that ¢(t) € A;. On the other
hand, ¢ € I5; thus there exists {t,}*_, < I, such that t,, — t as n — 00. By the continuity of ¢,

o(t) = lim p(t,) € Ay;

n—ao0

thus we find that ¢(t) € A; N A,, a contradiction. Therefore, I n I, = . Similarly, Iy N I = g;

thus we establish the existence of non-empty sets I; and I5 such that
01=nLul, LL#g, Loh=Lnl,=g
which shows that [0, 1] is disconnected, a contradiction. a
Alternative proof. Assume the contrary that there are two open sets V; and V5 such that
LAVInVo=¢;, 2. AnWVi#g;, 3 AnVo#=g;, 4. AcViul;.

Since A is path connected, for z € AnV; and y € An Vs, there exists a continuous map ¢ : [0,1] — A
such that ¢(0) = z and ¢(1) = y. By Theorem 4.14 in the lecture note, there exist U; and U, open
in (R,|-]) such that =1 (V1) = Uy n [0,1] and ¢~ (V5) = Uy n [0, 1]. Therefore,

0,1]=p (Aot V)ue (V) cU uls.

Since 0 € Uy, 1 € Uy, and [0,1] n Uy n Uy = ¢ (AN Vi nVy) = &, we conclude that [0, 1] is

disconnected, a contradiction to Theorem 3.68 in the lecture note. D

Problem 11. Let (M,d), (N, p) be metric spaces, A be a subset of M, and f : A — N be a

continuous map. Show that if C' < A is path connected, so is f(C).

Proof. Let y1,y2 € f(C). Then 3z, 29 € C such that f(x;) = y; and f(z3) = yo. Since C' is path
connected, 37 : [0,1] — C such that r is continuous on [0,1] and 7(0) = x; and r(1) = z,. Let
¢ :[0,1] — f(C) be defined by ¢ = f or. By Corollary 4.24 in the lecture note ¢ is continuous on
[0,1], and ¢(0) = y; and p(1) = ys. D



