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Problem 1. Check if the following functions on uniformly continuous.
1. f:(0,00) — R defined by f(z) = sinlogz.
2. f:(0,1) — R defined by f(z) = xsin i
: (0,00) — R defined by f(z) = +/x.

: R — R defined by f(x) = cos(z?).

R N

5. f:R — R defined by f(z) = cos®z.

6. f: R — R defined by f(z) = zsinx.

Problem 2. 1. Find all positive numbers a and b such that the function f(z) = Slnixxb) is uniformly

continuous on [0, ).

2. Find all positive numbers a and b such that the function f(z,y) = |x|*|y|® is uniformly contin-

uous on R2.

Problem 3. Show that f :[0,1] x R — R defined by f(z,y) = Ve is uniformly continuous on

1+ 22y?
its domain.
. 8
Proof. Let € > 0 be given. Choose N > 0 so that 11 2N? < e. Then
2
1. if (z,y) € [0, EZ] x [~N, N]°, we have ‘f(a:,y)‘ <WVz < %
2 1 4 €

_ S
2. if (x,y) € [Z’l] x [=N, N]¢, we have |f(z,y)| < TENE A < -
1

Therefore,
S
fy)| <5 Viwy) x[0,1]x [N, N].

Since [0, 1] x [-2N,2N] is compact, the continuity of f implies that f is uniformly continuous on
[0,1] x [0,2N]; thus there exists d; > 0 such that

’f(xlay1> - f(l’zjyz)‘ <¢€ v‘(mbyl) - (952:3/2)‘ < 0y and 1,25 € [0, 1], 41,42 € [-2N,2N].

Define § = min{dy, N}. If (x1,11), (22, y2) € [0,1] x R and ‘(xl,yl) — (xQ,y2)| < 0, then either (z1,41),
(12, 12) belongs to [0,1] x [-2N,2N] or (z1,y1), (z2,ys) belongs to [0,1] x [-N, N|*. Therefore,

|z, 1) = fza, )| < V(21,m1), (22,52) € [0,1] x R and |(z1,y1) — (22, 92)| < 6. o

Problem 4. Let f : R" — R™ be continuous, and lim f(z) = b exists for some b € R™. Show that

|z|—00
f is uniformly continuous on R".



Proof. Let € > 0 be given. By the fact that lim f(z) = b, there exists M > 0 such that

|| —00
|f(x) = b|rm < g whenever |z|g. = M .

By the Heine-Borel Theorem, B[0, M + 1] is compact; thus f is uniformly continuous on B[0, M + 1]
and there exists ¢ € (0, %) such that

If(z) = fly)] < % whenever |z — y||g» < 0 and z,y € B[O, M + 1]. (*)
Therefore, for x,y € R™ satisfying ||z — y|| < 9,
1. if z,y € B[0, M + 1], then () implies that
1£@) = F)lan <=
2. if x ¢ B[0, M + 1] or y ¢ B[0, M + 1], then x,y € B[0, M]* which implies that

1f (@) = f@)lrm < |f (@)[rm + 1f () |rm <. o

Problem 5. Suppose that f : R” — R™ is uniformly continuous. Show that there exists a > 0 and
b > 0 such that | f(z)|gm < alx|g~ + b.

Proof. Since f is uniformly continuous on R", there exists 4 > 0 such that

|f(z) = f(»)

g <1 whenever [z —y|gn <9.

For a given x € R", let N € N such that |x(|SRn <N < :ELRn + 1. For each k € N, define points x,

k
by z), = Nx Then {x}72, satisfies that

|z — 21 |rm = ||93]H[Rn <0 VkeN

which further implies that
1f(zx) — fzr—1)|rm <1 VkeN.

Therefore,
N
[f (@) em < |f(2) = fO)|em + [ £(O)[em < Z f(@r—1)|em + [ (0]
SN+ [f(0)|em < —||93||Rm + [ F(O)mm +1;
thus a = % and b = | f(0)|gm + 1 verify the inequality |f(z)|rm < alz|g~ + b. o

Problem 6. Let f(x) = f)g) be a rational function define on R, where p and ¢ are two polynomials.

Show that f is uniformly continuous on R if and only if the degree of ¢ is not more than the degree

of p plus 1.



Proof. Note that if f is defined on R, then p(x) # 0 for all x € R. By Problem B, there exist a,b > 0
such that

‘Q(‘/E)‘Sa\be VereR.

p(z)

Therefore, |g(x)| < |p(x)|(alz| + b) for all x € R, and this inequality above can be true if and only if
the degree of ¢ is not more than the degree of p plus 1. O

Problem 7. Suppose that f : R — R is a continuous periodic function; that is, there exists p > 0
such that f(z +p) = f(z) for all z € R (and f is continuous). Show that f is uniformly continuous
on R.

Proof. Let p > 0 be such that f(z+p) = f(x) for all z € R, and € > 0 be given. Since f is uniformly

continuous on [—p, p|, there exists ¢ € (0, p) such that
If(z) — fly)| < % whenever |x —y| <6 and z,y € [—p,p].

Therefore, if |z—y| < 0, we must have x, y € [kp—p, kp—+p) for some k € Z so that x—kp, y—kp € [—p, p]
which, together with the fact that |(z — kp) — (y — kp)| = | — y| < 9, implies that

[f() = fy)| = |fle = kp) = fly = kp)| < <. o

Problem 8. Let (a,b) € R be an open interval, and f : (a,b) — R™ be a function. Show that the

following three statements are equivalent.
1. f is uniformly continuous on (a,b).

2. f is continuous on (a,b), and both limits lim f (x) and hIilﬁ f(z) exist.

r—a

3. For all € > 0, there exists N > 0 such that |f(z) — f(y)| < & whenever )W‘ > N and
r,y € (a,b), x # y.

Proof. First we note that 1 and 2 are equivalent since

1. if f is uniformly continuous on (a, b), then there is a unique continuous extension g of f on [a, b];
thus lim_ g(x) = g(a) and hril, g(x) = g(b) exists, and 2 holds since lim g(x) = lim f(z) and
lim g(x) = lim f(x).

z—b— z—b~

2. if lim f(z) and hr?, f(z) exists, we define g : [a,b] — R by g(x) = f(z) for x € (a,b) and g(a),

g(b) are respectively the limit of f at a, b. Then g is continuous on [a, b]; thus the compactness

of [a, b] shows that ¢ is uniformly continuous on [a,b]. In particular, g is uniformly continuous

on (a,b) which is the same as saying that f is uniformly continuous on (a, b).

Next we prove that 1 and 3 are equivalent.



“1 = 3” Suppose the contrary that there exists € > 0 such that for each n € N there exist x,,, y, € (a,b)
such that

>n VneN.

N L e e
By the Bolzano-Weierstrass Theorem/Property, there exist convergent subsequence {,,}72,
and {y,,}72, with limit 2 and y. Since z,,y, € (a,b) for all n € N, we must have x,y € [a, b].
If x =y, then |z, — y,| — 0 as n — o0; thus the uniform continuity of f on (a,b) implies that
|f(zn) — f(yn)| — 0 as n — oo which contradicts to the fact that |f(z,) — f(yn)| = € for all
n € N. Therefore, x # y which further shows that the limit
~Yn
exists since the limit {f(z,)}’2; and {f(y )}OO both exist and lim (z, —y,) = x —y # 0. This

f(@n) = f(yn)
— Yn

7’L—>OO

is a contradiction to that > n for all n € N.

“3 = 1” Suppose the contrary that there exists ¢ > 0 such that for each n € N there exists
o 1
T, Yn € (a,b) satistying |z, — y,| < = but |f(x,) — f(yn)| = €. For this £ > 0, by assumption
n
there exists NV > 0 such that

f(z) = fy)

‘>Nand z,y € (a,b),x #y.
r—y

|f(z) — f(y)| <e whenever ‘

Since | f(x,) — f(yn)| = €, we must have x,, # y,; thus the fact that x,,y, € (a,b) implies that

‘L(") <N VneN.
Yn
This contradicts to the fact that |z, — y,| < 1 and \f(zn) — fyn)| > €. a
n

Problem 9. Suppose that f : [a,b] — R is Holder continuous with exponent «; that is, there
exist M > 0 and « € (0, 1] such that

[f(2) = fy)l < Mlz—y|*  Va,yelab].

Show that f is uniformly continuous on [a,b]. Show that f : [0,0) — R defined by f(z) = /x is

Holder continuous with exponent 3
Proof. Let € > 0 be given. Define 6 = ~aea. Then § > 0. Moreover, if |z —y| < d and x,y € [a, b],
[f(@) = f)] < Mz —y|* < Mo® =&

Therefore, f is uniformly continuous on [a, b].
1
Next we show that f(x) = 4/z is Holder continuous with exponent 7 Note that if z,y > 0 and
T # Y,
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thus
|f—\/§|<|x—y|% Ve, y>0and xz #y.
1
which implies that f(z) = 4/ is Holder continuous with exponent 5 on 0, 0). O

Problem 10. A function f : A x B — R™, where A € R and B < RP, is said to be separately
continuous if for each xy € A, the map g(y) = f(xo,y) is continuous and for yo € B, h(z) = f(x,yo)

is continuous. f is said to be continuous on A uniformly with respect to B if
Ve>0,36 >05|f(x,y) — f(zo,y)|, <e whenever |z—azo|<dandyeB.

Show that if f is separately continuous and is continuous on A uniformly with respect to B, then f

is continuous on A x B.
Proof. Let ¢ > 0, and (a,b) € A x B be given. By assumption there exists d; > 0 such that

Hf(x,y)—f(a,y)”2<% whenever |z —aly <d andze A,ye B.

Since f is separately continuous, there exists d, > 0 such that
| f(a,y) = f(a,b)], < % whenever |y —b|y < d; and y € B.
Define 6 = min{dy, do}. Then if |(z,y) — (a,b)|s < §, we must have |z — al, < §; and |y — b2 < &y
so that
|f(z,y) = fla;b)l2 = | f (2, y) = fla,y) + fla,y) = fla,b)]s
< [ y) = flay)lz + [ fla,y) = fla,b)]2 < &
which shows that f is continuous at (a, b). D

Problem 11. Let (M,d) be a metric space, A € M, and f,g: A — R be uniformly continuous on
A. Show that if f and g are bounded, then fg is uniformly continuous on A. Does the conclusion
still hold if f or g is not bounded?

Proof. Let {x,}>,, {yn}; be sequences in A satisfying that li_r)rolo d(xn,y,) = 0. Suppose that
|f(z)] < M and |g(z)| < M for all z € A. Then !
|f(@n)g(zn) = f(yn)g(um)| = | f(@n)g(xn) = f(@n)g(Wn) + (@0)9(n) = f(Yn)g(yn)]
| F(@a)l|g(zn) = g(yn)| + [9(ya)l| £ (2n) — £ (yn)]
< M(|f(za) = Fya)| + |g(an) — 9(ya)]) :

thus the uniform continuity of f and g, together with the Sandich Lemma, implies that

Hm | f(z0)g(xn) — f(yn)g(yn)| = 0.

n—0o0

N

Therefore, fg is uniformly continuous on A.

When the boundedness is removed from the condition, the product of f and g might not be

2

uniformly continuous. For example, f(z) = g(x) = x are continuous on R, but (fg)(z) = x* is no

uniformly continuous on R (from an example in class). D



