Problem 1. Let $\{T_k\}_{k=1}^{\infty} \subseteq \mathcal{B}(\mathbb{R}^n, \mathbb{R}^m)$ be a sequence of bounded linear maps from $\mathbb{R}^n \to \mathbb{R}^m$. Prove that the following three statements are equivalent:

- 1. there exists a function $T: \mathbb{R}^n \to \mathbb{R}^m$ such that $\{T_k \boldsymbol{x}\}_{k=1}^{\infty}$ converges to $T\boldsymbol{x}$ for all $\boldsymbol{x} \in \mathbb{R}^n$;
- 2. $\lim_{k,\ell\to\infty} ||T_k T_\ell||_{\mathscr{B}(\mathbb{R}^n,\mathbb{R}^m)} = 0;$
- 3. there exists a function $T: \mathbb{R}^n \to \mathbb{R}^m$ such that for every compact $K \subseteq \mathbb{R}^n$ and $\varepsilon > 0$ there exists N > 0 such that

$$||T_k \boldsymbol{x} - T \boldsymbol{x}||_{\mathbb{R}^m} < \varepsilon$$
 whenever $\boldsymbol{x} \in K$ and $k \geqslant N$.

Proof. "1 \Rightarrow 3" Let K be a compact set in \mathbb{R}^n , and $\varepsilon > 0$ be given. Then there exists R > 0 such that $K \subseteq B[0, R]$. By assumption, for each $1 \leq i \leq n$, there exist $N_i > 0$ such that

$$||T_k \mathbf{e}_i - T \mathbf{e}_i||_{\mathbb{R}^m} < \frac{\varepsilon}{Rn}$$
 whenever $k \geqslant N_i$.

For $\mathbf{x} \in \mathbb{R}^n$, write $\mathbf{x} = x^{(1)}\mathbf{e}_1 + x^{(2)}\mathbf{e}_2 + \dots + x^{(n)}\mathbf{e}_n$. Then if $\mathbf{x} \in K$, $|x^{(i)}| \leq R$ for all $1 \leq i \leq n$. Therefore, if $\mathbf{x} \in K$ and $k \geq N \equiv \max\{N_1, \dots, N_n\}$,

$$||T_k \boldsymbol{x} - T \boldsymbol{x}||_{\mathbb{R}^m} = ||T_k \left(\sum_{i=1}^n x^{(i)} \mathbf{e}_i \right) - T \left(\sum_{i=1}^n x^{(i)} \mathbf{e}_i \right) ||_{\mathbb{R}^m} = ||\sum_{i=1}^n x^{(i)} \left(T_k \mathbf{e}_i - T \mathbf{e}_i \right) ||_{\mathbb{R}^m}$$

$$\leq \sum_{i=1}^n |x^{(i)}| ||T_k \mathbf{e}_i - T \mathbf{e}_i||_{\mathbb{R}^m} < \sum_{i=1}^n R \frac{\varepsilon}{Rn} = \varepsilon.$$

"3 \Rightarrow 2" Let K = B[0,1] (which is compact), and $\varepsilon > 0$ be given. By assumption there exists N > 0 such that

$$||T_k \boldsymbol{x} - T \boldsymbol{x}||_{\mathbb{R}^m} < \frac{\varepsilon}{3}$$
 whenever $\boldsymbol{x} \in B[0,1]$ and $k \geqslant N$.

If $k, \ell \geqslant N$ and $\boldsymbol{x} \in B[0, 1]$,

$$||T_k \boldsymbol{x} - T_\ell x||_{\mathbb{R}^m} \leqslant ||T_k \boldsymbol{x} - T \boldsymbol{x}||_{\mathbb{R}^m} + ||T_\ell \boldsymbol{x} - T \boldsymbol{x}||_{\mathbb{R}^m} < \frac{2\varepsilon}{3}$$

which shows that

$$||T_k - T_\ell||_{\mathscr{B}(\mathbb{R}^n, \mathbb{R}^m)} = \sup_{\boldsymbol{x} \in B[0,1]} ||T_k \boldsymbol{x} - T_\ell x||_{\mathbb{R}^m} \leqslant \frac{2\varepsilon}{3} < \varepsilon \qquad \forall \, k, \ell \geqslant N \,.$$

Therefore, $\lim_{k \ell \to \infty} ||T_k - T_\ell||_{\mathscr{B}(\mathbb{R}^n, \mathbb{R}^m)} = 0.$

"2 \Rightarrow 1" This part is essentially identical to the proof of Proposition 5.8 in the lecture note (with $X = \mathbb{R}^n$ and $Y = \mathbb{R}^m$).

Problem 2. Recall that $\mathcal{M}_{m \times n}$ is the collection of all $m \times n$ real matrices. For a given $A \in \mathcal{M}_{m \times n}$, define a function $f : \mathcal{M}_{n \times m} \to \mathbb{R}$ by

$$f(M) = \operatorname{tr}(AM),$$

where tr is the trace operator which maps a square matrix to the sum of its diagonal entries. Show that $f \in \mathcal{B}(\mathcal{M}_{n \times m}, \mathbb{R})$.

Hint: You may need the conclusion in Example 4.29 in the lecture note.

Proof. Let $A = [a_{ij}]_{1 \leq i \leq m, 1 \leq j \leq n}$ and $M = [m_{jk}]_{1 \leq j \leq n, 1 \leq k \leq m}$. Then

$$\operatorname{tr}(AM) = \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} m_{ji}.$$

First we show that $f \in \mathcal{L}(\mathcal{M}_{n \times m}, \mathbb{R})$. Let $M = [m_{jk}]_{1 \leq j \leq n, 1 \leq k \leq m}$ and $N = [n_{jk}]_{1 \leq j \leq n, 1 \leq k \leq m}$ be matrices in $\mathcal{M}_{n \times m}$ and $c \in \mathbb{R}$. Then

$$f(cM+N) = \operatorname{tr}(A(cM+N)) = \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} (cm_{ji} + n_{ji}) = c \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} m_{ji} + \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} n_{ji}$$
$$= c \operatorname{tr}(AM) + \operatorname{tr}(AN) = cf(M) + f(N).$$

Let $\|\cdot\|: \mathcal{M}_{n\times m} \to \mathbb{R}$ be defined by

$$\|[m_{jk}]_{1 \le j \le n, 1 \le k \le m}\| = \sum_{j=1}^n \sum_{k=1}^m |m_{jk}|.$$

Then $\|\cdot\|$ is a norm on $\mathcal{M}_{n\times m}$, and

$$\sup_{\|M\|=1} |f(M)| = \sup_{\sum_{j=1}^n \sum_{k=1}^m |m_{jk}|=1} \left| \sum_{i=1}^m \sum_{j=1}^n a_{ij} m_{ji} \right| \leqslant \sum_{i=1}^m \sum_{j=1}^n |a_{ij}| < \infty;$$

thus $f: (\mathcal{M}_{n \times m}, \|\cdot\|) \to (\mathbb{R}, |\cdot|)$ is bounded. Let $\|\cdot\|$ be another norm on $\mathcal{M}_{n \times m}$. Since $\mathcal{M}_{n \times m}$ is finite dimensional vector spaces over \mathbb{R} , there exists c and C such that

$$c||M|| \le ||M|| \le C||M|| \quad \forall M \in \mathcal{M}_{n \times m}.$$

Therefore, $\{M \in \mathcal{M}_{n \times m} \mid |||M||| \leqslant 1\} \subseteq \{M \in \mathcal{M}_{n \times m} \mid ||M|| \leqslant \frac{1}{c}\}$

$$\sup_{\|M\|=1} |f(M)| \leqslant \sup_{\|M\| \leqslant 1/c} |f(M)| = \sup_{\|cM\| \leqslant 1} \frac{1}{c} |f(cM)| \leqslant \frac{1}{c} \sum_{i=1}^{m} \sum_{j=1}^{n} |a_{ij}| < \infty;$$

thus $f: (\mathcal{M}_{n \times m}, ||| \cdot |||) \to \mathbb{R}$ is bounded.

Problem 3. Let $\mathscr{P}([0,1))$ be the collection of all polynomials defined on [0,1], and $\|\cdot\|_{\infty}$ be the max-norm defined by $\|p\|_{\infty} = \max_{x \in [0,1]} |p(x)|$.

1. Show that the differential operator $\frac{d}{dx}: \mathscr{P}([0,1]) \to \mathscr{P}([0,1])$ is linear.

2. Show that $\frac{d}{dx}: (\mathscr{P}([0,1]), \|\cdot\|_{\infty}) \to (\mathscr{P}([0,1]), \|\cdot\|_{\infty})$ is unbounded; that is, show that $\sup_{\|p\|_{\infty}=1} \|p'\|_{\infty} = \infty.$

Proof. 1. Let $p, q \in \mathcal{P}([0,1])$ and $c \in \mathbb{R}$. Then by the rule of differentiation,

$$\frac{d}{dx}(cp+q)(x) = cp'(x) + q'(x) = c\frac{d}{dx}p(x) + \frac{d}{dx}q(x);$$

thus $\frac{d}{dx}: \mathscr{P}([0,1]) \to \mathscr{P}([0,1])$ is linear.

2. Consider $p_n(x) = x^n$. Then $||p_n||_{\infty} = \max_{x \in [0,1]} x^n = 1$ for all $n \in \mathbb{N}$; however,

$$\|p_n'\|_{\infty} = \max_{x \in [0,1]} nx^{n-1} = n \qquad n \in \mathbb{N};$$

thus $\sup_{\|p\|_{\infty}=1} \|p'\|_{\infty} = \infty$.

Problem 4. Let $(X, \|\cdot\|_X)$ and $(Y, \|\cdot\|_Y)$ be normed spaces, and $T \in \mathcal{B}(X, Y)$. Show that for all $x \in X$ and x > 0,

$$\sup_{\boldsymbol{x}' \in B(\boldsymbol{x},r)} \|T\boldsymbol{x}'\|_{Y} \geqslant r \|T\|_{\mathcal{B}(X,Y)}.$$

Hint: Prove and make use of the inequality $\max \{ \|T(\boldsymbol{x} + \boldsymbol{\xi})\|_Y, \|T(\boldsymbol{x} - \boldsymbol{\xi})\|_Y \} \ge \|T\boldsymbol{\xi}\|_Y$ for all $\boldsymbol{\xi} \in Y$. Proof. Let $\boldsymbol{x} \in X$ and r > 0 be given. Then for all $\boldsymbol{\xi} \in B(0, r)$,

$$\max \left\{ \| T(\boldsymbol{x} + \boldsymbol{\xi}) \|_{Y}, \| T(\boldsymbol{x} - \boldsymbol{\xi}) \|_{Y} \right\}$$

$$\geqslant \frac{1}{2} \left[\| T(\boldsymbol{x} + \boldsymbol{\xi}) \|_{Y} + \| T(\boldsymbol{x} - \boldsymbol{\xi}) \|_{Y} \right] \geqslant \frac{1}{2} \| T(\boldsymbol{x} + \boldsymbol{\xi}) - T(\boldsymbol{x} - \boldsymbol{\xi}) \|_{Y} = \| T \boldsymbol{\xi} \|_{Y}.$$

Therefore,

$$\sup_{\xi \in B(\mathbf{0},r)} \max \left\{ \| T(\boldsymbol{x} + \boldsymbol{\xi}) \|_{Y}, \| T(\boldsymbol{x} - \boldsymbol{\xi}) \|_{Y} \right\} \geqslant \sup_{\xi \in B(\mathbf{0},r)} \| T \boldsymbol{\xi} \|_{Y} = r \| T \|_{\mathscr{B}(X,Y)},$$

and the desired inequality follows from the fact that

$$\sup_{\boldsymbol{x}' \in B(\boldsymbol{x},r)} \|T\boldsymbol{x}'\|_Y = \sup_{\boldsymbol{\xi} \in B(\boldsymbol{0},r)} \max \left\{ \|T(\boldsymbol{x} + \boldsymbol{\xi})\|_Y, \|T(\boldsymbol{x} - \boldsymbol{\xi})\|_Y \right\}.$$

Problem 5. Let $(X, \|\cdot\|_X)$ be a Banach space, $(Y, \|\cdot\|_Y)$ be a normed space, and $\mathscr{F} \subseteq \mathscr{B}(X, Y)$ be a family of bounded linear maps from X to Y. Show that if $\sup_{T \in \mathscr{F}} \|Tx\|_Y < \infty$ for all $x \in X$, then

$$\sup_{T \in \mathscr{F}} \|T\|_{\mathscr{B}(X,Y)} < \infty.$$

Hint: Suppose the contrary that there exists $\{T_n\}_{n=1}^{\infty} \subseteq \mathscr{F}$ such that $\|T_n\|_{\mathscr{B}(X,Y)} \geqslant 4^n$. Using Problem ?? to choose a sequence $\{\boldsymbol{x}_n\}_{n=0}^{\infty}$, where $\boldsymbol{x}_0 = \boldsymbol{0}$, such that

$$x_n \in B(x_{n-1}, 3^{-n})$$
 and $||T_n x_n||_Y \ge \frac{2}{3} \cdot 3^{-n} ||T_n||_{\mathscr{B}(X,Y)}$.

Show that $\{\boldsymbol{x}_n\}_{n=1}^{\infty}$ converges to some point $\boldsymbol{x} \in X$ but $\{T_n\boldsymbol{x}\}_{n=1}^{\infty}$ is not bounded in Y.

Remark: The conclusion above is called the Uniform Boundedness Principle (or the Banach-Steinhaus Theorem). This is one of the fundamental results in functional analysis.

Proof. Suppose the contrary that $\sup_{T \in \mathscr{F}} ||T||_{\mathscr{B}(X,Y)} = \infty$. Then there exists $\{T_n\}_{n=1}^{\infty} \subseteq \mathscr{F}$ such that

$$||T_n||_{\mathscr{B}(X,Y)} \geqslant 4^n \quad \forall n \in \mathbb{N}.$$

Let $\mathbf{x}_0 = \mathbf{0}$. Define $r_n = 3^{-n}$ and $\{\mathbf{x}_n\}_{n=1}^{\infty} \subseteq X$ so that

$$x_n \in B(x_{n-1}, r_n)$$
 and $||T_n x_n||_Y \ge \frac{2}{3} r_n ||T_n||_{\mathscr{B}(X,Y)}$.

We note that such $\{x_n\}_{n=1}^{\infty}$ exists because of Problem ??. For m > n,

$$\|\boldsymbol{x}_{n} - \boldsymbol{x}_{m}\|_{X} \leq \|\boldsymbol{x}_{n} - \boldsymbol{x}_{n+1}\|_{X} + \|\boldsymbol{x}_{n+1} - \boldsymbol{x}_{n+1}\|_{X} + \dots + \|\boldsymbol{x}_{m-1} - \boldsymbol{x}_{m}\|_{X}$$

$$\leq 3^{-(n+1)} + 3^{-(n+2)} + \dots + 3^{-m} \leq 3^{-(n+1)} \left(1 + \frac{1}{3} + \dots\right) \leq \frac{1}{2} \cdot 3^{-n};$$

thus $\{\boldsymbol{x}_n\}_{n=1}^{\infty}$ is a Cauchy sequence. Since $(X, \|\cdot\|_X)$ is complete, $\{\boldsymbol{x}_n\}_{n=1}^{\infty}$ converges to some point $\boldsymbol{x} \in X$, and $\|\boldsymbol{x} - \boldsymbol{x}_n\|_X \leq \frac{1}{2} \cdot 3^{-n}$. Therefore,

$$||T_{n}\boldsymbol{x}||_{Y} \geqslant ||T_{n}\boldsymbol{x}_{n}||_{Y} - ||T_{n}(\boldsymbol{x} - \boldsymbol{x}_{n})||_{Y} \geqslant \frac{2}{3}r_{n}||T_{n}||_{\mathscr{B}(X,Y)} - ||T_{n}||_{\mathscr{B}(X,Y)}||\boldsymbol{x} - \boldsymbol{x}_{n}||_{X}$$
$$\geqslant \left(\frac{2}{3} - \frac{1}{2}\right)||T_{n}||_{\mathscr{B}(X,Y)}3^{-n} = \frac{1}{6}||T_{n}||_{\mathscr{B}(X,Y)}3^{-n} \geqslant \frac{1}{6} \cdot \left(\frac{4}{3}\right)^{n}$$

so that $\sup_{n\in\mathbb{N}} ||T_n \boldsymbol{x}||_Y = \infty$, a contradiction.

Problem 6. Let $X = \mathcal{M}_{n \times m}$, the collection of all $n \times m$ real matrices, equipped with the Frobenius norm $\|\cdot\|_F$ introduced in Problem 7 of Exercise 5, and $f: X \to \mathbb{R}$ be defined by $f(A) = \|A\|_F^2$. Show that f is differentiable on X and find (Df)(A) for $A \in X$.

Proof. First we note that $f(A) = \operatorname{tr}(AA^{\mathrm{T}})$, where $\operatorname{tr}(M)$ denotes the trace of M if M is a square matrix. Let $A = [a_{ij}] \in X$. Then for $\delta A \in X$, we have

$$f(A + \delta A) - f(A) = \operatorname{tr} \left[(A + \delta A)(A + \delta A)^{\mathrm{T}} \right] - \operatorname{tr}(AA^{\mathrm{T}})$$
$$= \operatorname{tr} \left(AA^{\mathrm{T}} + A\delta A^{\mathrm{T}} + \delta AA^{\mathrm{T}} + \delta A\delta A^{\mathrm{T}} \right) - \operatorname{tr}(AA^{\mathrm{T}})$$
$$= \operatorname{tr}(A\delta A^{\mathrm{T}}) + \operatorname{tr}(\delta AA^{\mathrm{T}}) + \operatorname{tr}(\delta A\delta A^{\mathrm{T}}).$$

Define $L_A: X \to \mathbb{R}$ by $L(B) = \operatorname{tr}(AB^{\mathrm{T}}) + \operatorname{tr}(BA^{\mathrm{T}})$. Then Problem ?? shows that $L \in \mathcal{B}(X, \mathbb{R})$. Therefore, by the fact that

$$\lim_{\delta A \to 0} \frac{\left| f(A + \delta A) - f(A) - L_A(\delta A) \right|}{\|\delta A\|_F} = \lim_{\delta A \to 0} \frac{\left| \operatorname{tr}(\delta A \delta A^{\mathrm{T}}) \right|}{\|\delta A\|_F} = \lim_{\delta A \to 0} \frac{\|\delta A\|_F^2}{\|\delta A\|_F} = \lim_{\delta A \to 0} \|\delta A\|_F = 0,$$

we conclude that f is differentiable at A and $(Df)(A) = L_A$.

Problem 7. Let $\|\cdot\|_F$ denote the Frobenius norm of matrices given in Problem 7 of Exercise 5. For an $m \times n$ matrix $A = [a_{ij}]$, we look for an $m \times k$ matrix $C = [c_{ij}]$ and an $k \times n$ matrix $R = [r_{ij}]$, where $1 \le k \le \min\{m, n\}$, such that $\|A - CR\|_F^2$ is minimized. This is to minimize the function

$$f(C,R) = ||A - CR||_F^2 = \operatorname{tr}((A - CR)(A - CR)^{\mathrm{T}}) = \sum_{i=1}^n \sum_{j=1}^m (a_{ij} - \sum_{\ell=1}^k c_{i\ell} r_{\ell j})^2.$$

Show that if $C \in \mathbb{R}^{m \times k}$ and $R \in \mathbb{R}^{k \times n}$ minimize f, then C, R satisfy

$$(A - CR)R^{\mathrm{T}} = 0$$
 and $C^{\mathrm{T}}(A - CR) = 0$.

Problem 8. Let $X = \mathscr{B}(\mathbb{R}^n, \mathbb{R}^n)$ equipped with norm $\|\cdot\|$, and $f : \mathrm{GL}(n) \to \mathscr{B}(\mathbb{R}^n, \mathbb{R}^n)$ be defined by $f(L) = L^{-2} \equiv L^{-1} \circ L^{-1}$. Show that f is differentiable on $\mathrm{GL}(n)$ and find (Df)(L) for $L \in \mathrm{GL}(n)$.

Proof. Let $L \in GL(n)$. By the fact that

$$K^{-1} - L^{-1} = -K^{-1}(K - L)L^{-1}$$
 and $K^{-2} - L^{-2} = -K^{-2}(K - L)L^{-1} - K^{-1}(K - L)L^{-2}$,

we have

$$\begin{split} K^{-2} - L^{-2} &= - \big[L^{-2} - K^{-2} (K - L) L^{-1} - K^{-1} (K - L) L^{-2} \big] (K - L) L^{-1} \\ &- \big[L^{-1} - K^{-1} (K - L) L^{-1} \big] (K - L) L^{-2} \\ &= - L^{-2} (K - L) L^{-1} - L^{-1} (K - L) L^{-2} + K^{-2} (K - L) L^{-1} (K - L) L^{-1} \\ &+ K^{-1} (K - L) L^{-2} (K - L) L^{-1} + K^{-1} (K - L) L^{-1} (K - L) L^{-2} \,; \end{split}$$

thus

$$\begin{split} \|K^{-2} - L^{-2} + L^{-2}(K - L)L^{-1} + L^{-1}(K - L)L^{-2}\| \\ & \leq \left[\|K^{-2}\| \|L^{-1}\|^2 + 2\|K^{-1}\| \|L^{-1}\| \|L^{-2}\| \right] \|K - L\|^2 \,. \end{split}$$

This motivates us to define $(Df)(L) \in \mathcal{B}(X,X)$ by

$$(Df)(L)(H) = -L^{-2}HL^{-1} - L^{-1}HL^{-2} \qquad \forall H \in X,$$
 (\$\displies\$)

and (\star) implies that

$$\lim_{K \to L} \frac{\|f(K) - f(L) - (Df)(L)(K - L)\|}{\|K - L\|} = 0.$$

Therefore, f is differentiable on GL(n), and (Df)(L) is given by (\diamond) .

Problem 9. Let $X = \mathscr{C}([-,1,1];\mathbb{R})$ and $\|\cdot\|_X$ be defined by $\|f\|_X = \max_{x \in [-1,1]} |f(x)|$, and $(Y,\|\cdot\|_Y) = (\mathbb{R},|\cdot|)$. Consider the map $\delta: X \to \mathbb{R}$ be defined by $\delta(f) = f(0)$. Show that δ is differentiable on X. Find $(D\delta)(f)$ (for $f \in \mathscr{C}([-1,1];\mathbb{R})$).

Proof. Let $f \in X$ be given. For $h \in X$, we have

$$\delta(f+h) - \delta f = (f(0) + h(0)) - f(0) = h(0) = \delta h;$$

thus we expect that $(D\delta)(f)(h) = \delta h$. We first show that $\delta \in \mathcal{B}(X,\mathbb{R})$.

1. For linearity, for $h_1, h_2 \in X$ and $c \in \mathbb{R}$, we have

$$\delta(ch_1 + h_2) = (ch_1 + h_2)(0) = ch_1(0) + h_2(0) = c\delta h_1 + \delta h_2.$$

2. For boundedness, if $||h||_X = 1$, then $\max_{x \in [-1,1]} |h(x)| = 1$ so that

$$|\delta h| = |h(0)| \le \max_{x \in [-1,1]} |h(x)| = 1 < \infty.$$

Having established that $\delta \in \mathcal{B}(X,\mathbb{R})$, we note that

$$\lim_{h \to 0} \frac{\left| \delta(f+h) - \delta f - \delta h \right|}{\|h\|_X} = \lim_{h \to 0} \frac{0}{\|h\|_X} = 0;$$

thus δ is differentiable at f (for all $f \in X$), and $(D\delta)(f) = \delta$ for all $f \in X$.

Problem 10. Let $X = \mathscr{C}([a,b];\mathbb{R})$ and $\|\cdot\|_2$ be the norm induced by the inner product $\langle f,g\rangle = \int_a^b f(x)g(x)\,dx$. Define $I:X\to X$ by

$$I(f)(x) = \int_{a}^{x} f(t)^{2} dt \qquad \forall x \in [a, b].$$

Show that I is differentiable on X, and find (DI)(f).

Proof. Let $f \in X$ be given. For $h \in X$,

$$I(f+h)(x) - I(f)(x) = \int_{a}^{x} (f(t) + h(t))^{2} dt - \int_{a}^{x} f(t)^{2} dt = \int_{a}^{x} [2f(t)h(t) + h(t)^{2}] dt; \quad (\star\star)$$

thus we expect that

$$(DI)(f)(h)(x) = 2\int_{a}^{x} f(t)h(t) dt. \qquad (\diamond\diamond)$$

Define L by $(Lh)(x) = 2 \int_a^x f(t)h(t) dt$. Claim: $L \in \mathcal{B}(X, X)$.

1. For linearity, let $h_1, h_2 \in X$ and $c \in \mathbb{R}$. Then

$$L(ch_1 + h_2)(x) = 2\int_a^x f(t) (ch_1(t) + h_2(t)) dt = 2c \int_a^x f(t)h_1(t) dt + 2\int_a^x f(t)h_2(t) dt$$

which shows that $L(ch_1 + h_2) = cL(h_1) + L(h_2)$.

2. Note that by the Cauchy-Schwarz inequality,

$$\left| \int_{a}^{x} f(t)h(t) dt \right| \leq \int_{a}^{b} |f(t)| |h(t)| dt \leq ||f||_{2} ||h||_{2};$$

thus for $||h||_2 = 1$,

$$||L(h)||_2 = \left[\int_a^b \left(\int_a^x f(t)h(t) dt \right)^2 dx \right]^{\frac{1}{2}} \le \left(\int_a^b ||f||_2^2 ||h||_2^2 dx \right)^{\frac{1}{2}} \le \sqrt{b-a} ||f||_2.$$

Therefore,

$$||L|| = \sup_{\|h\|_2=1} ||L(h)||_2 \le \sqrt{b-a} ||f||_2 < \infty$$

which shows that L is bounded.

Finally, using $(\star\star)$ we obtain that

$$\begin{aligned} \left\| I(f+h) - I(f) - L(h) \right\|_2 &= \left[\int_a^b \left(\int_a^x h(t)^2 dt \right)^2 dx \right]^{\frac{1}{2}} \leqslant \left[\int_a^b \left(\int_a^b h(t)^2 dt \right)^2 dx \right]^{\frac{1}{2}} \\ &= \left[\int_a^b \|h\|_2^4 dx \right]^{\frac{1}{2}} = \sqrt{b-a} \|h\|_2^2; \end{aligned}$$

thus

$$\lim_{h \to 0} \frac{\|I(f+h) - I(f) - (DI)(f)(h)\|_{2}}{\|h\|_{2}} = 0.$$

Therefore, I is differentiable at f for all $f \in X$ and (DI)(f) is given by $(\diamond \diamond)$.

Problem 11. Let $X = \mathcal{D}([a,b];\mathbb{R})$, the collection of all piecewise continuously differentiable real-valued function, and $\|\cdot\|_2$ be the norm (on X) induced by the inner product

$$\langle f, g \rangle = \int_a^b \left[f(x)g(x) + f'(x)g'(x) \right] dx.$$

For $g \in \mathscr{C}([a,b];\mathbb{R})$, define $I: X \to \mathbb{R}$ by

$$I(f) = \int_a^b \left[g(t) - f'(t) \right]^2 dt.$$

Show that I is differentiable on X, and find (DI)(f).

Proof. Let $f, h \in X$, and L be defined by

$$L(h) = -2 \int_{a}^{b} [g(t) - f'(t)]h'(t) dt.$$

Then $L: X \to \mathbb{R}$ is linear and the Cauchy-Schwartz inequality

$$|L(h)| \le 2\left(\int_a^b |g(t) - f'(t)|^2 dt\right)^{\frac{1}{2}} \left(\int_a^b |h'(t)|^2 dt\right)^{\frac{1}{2}}$$

$$\le 2\left(\int_a^b |g(t) - f'(t)|^2 dt\right)^{\frac{1}{2}} ||h||_X$$

which implies that $L: X \to \mathbb{R}$ is bounded with

$$||L||_{\mathscr{B}(X,\mathbb{R})} \leqslant 2\left(\int_a^b \left|g(t) - f'(t)\right|^2 dt\right)^{\frac{1}{2}} < \infty.$$

Therefore, by the fact that

$$\begin{split} \left| I(f+h) - I(f) - L(h) \right| \\ &= \left| \int_a^b \left[\left| g(t) - f'(t) - h'(t) \right|^2 - \left| g(t) - f'(t) \right|^2 \right] dt + 2 \int_a^b \left[g(t) - f'(t) \right] h'(t) dt \right| \\ &= \int_a^b \left| h'(t) \right|^2 dt \leqslant \|h\|_X^2 \,, \end{split}$$

we find that

$$\lim_{h \to 0} \frac{\left| I(f+h) - I(f) - L(h) \right|}{\|h\|_X} = 0.$$

Therefore, I is differentiable at f and (DI)(f) = L.