Exercise Problem Sets 14
Dec. 16. 2022

Problem 1. Let (X, |- ||x) be a normed space, A € X and f : A — R be a function. f is said
to attain a local extremum at a € A if there exists r > 0 such that either f(z) < f(a) for all
x € B(a,r) n Aor f(z) = f(a) for all z € B(a,r) n A. Show that if f attains a local extremum at
an interior point a € A and f is differentiable at a, then (D f)(a) is the zero map in 2(X,R).

Proof. Suppose that f attains an extremum at a € A. There exists 7 > 0 such that f(z) < f(a) for
all x € B(a,r) or f(z) = f(a) for all x € B(a,r). Since f is differentiable at a, by Remark 5.15 in

the lecture note for all |[v||x =1,

o £+ 1) = f(a)
t—0 t

= (Df)(a)(v).

Since f attains a local extremum at a, the function g : (—r,r) — R defined by ¢(t) = f(a + tv)

attains a local maximum at ¢ = 0; thus

t) — tv) —
o 0) = i 2090 _ o Fatt) = fa) o
t—0 t t—0 t
Since the identity above holds for all unit vector v, we find that (D f)(a) is the zero map. a
Problem 2. Let U < R" be open, and f : U — R. Suppose that the partial derivatives %, R %
1 n

are bounded on U; that is, there exists a real number M > 0 such that

af(as)‘éM VeeUand j=1,---,n.
al’j

Show that f is continuous on U.

Hint: Mimic the proof of Theorem 5.40 in the lecture note.

of
6:@-
exists r > 0 such that B(a,r) < U. For x € B(a,r), let k = x — a. Then

Proof. Assume that ‘ (w)’ < M forall x e U and 1 <7 <n. Let a € U be given. Then there

‘f(x)—f(a)‘ = |f(a1+k17a2+k27"' 7an+kn>_f(a'17a27"' 70%)\

<

M=

[f(a'17"' 7aj—17aj+kja"' 7an+kn)_f(al7”' aajvaj+l+kj+l7"' aan—{_kn)]‘
1

M -

‘f(alla"' 7aj717aj+kj7"' 7an+kn)_f(a17"' 7aj7aj+1+kj+17"' 7an+kn)

1

J

By the Mean Value Theorem, for each 1 < j < n there exists 6, € (0,1) such that

|f(6l1,"‘ 7&j—1aaj+kj7"' aa'n+kn)_f(a17"' 7ajaa'j+1+kj+17"' 7an+k:n)

0
= a—j(al, cee ,aj,l,aj + ijj,aj+1 + kj+1, e, Ay + kn)k’j ;
J



thus
‘f(al,--- caj,a; + ki san + k) — flar, L a5,a00 ki, ,an+kn)| < M|Ejl.

Therefore, if z € B(a,r),
(@) = (@) = 3 MIk;| < Myn( Y ki) = vaMle -l
j=1 j=1

This shows that f is continuous at a. =

Problem 3. Let U < R” be open, and f : U — R. Show that f is differentiable at a € U if and only

if there exists a vector-valued function € : U — R™ such that
fl@) = fla) =) a7],(@)(%‘9‘ —a;) =¢(x) (z —a)
j=1

and £(z) — 0 as x — a.

Proof. “=7 Suppose that f is differentiable at a. Define € : U — R" by

@)= 1@ - 3 FL @ - )| ot e

e(r) =

0 ifr=a.
Then for x # a,
@) = 1@ - 5 2 (@) - a)
] < bal
which, by the differentiability of f at a, implies that
}CIE,I}L le(z)| =0.
Moreover, .
“(w) (e =) = f2) = @) = 33 T @)y — )
=

“«<” Suppose that there exists a vector-valued function € : U — R" such that

and £(z) — 0 as x — a. Then for x # a, the Cauchy-Schwarz inequality implies that

noof
fa) = fla) = X so@ —a)|
e = E O e
thus 0
f@) = Fla) = 3 £ (@), — a))
= o -
Therefore, f is differentiable at a with [(Df)(a)] = [;fl( ) a&g‘i(a)] o



Problem 4. Let f : R?> — R be defined by

3

flzy) =4 ="+
0 if (x,y) = (0,0).

if (x,y) # (0,0),

and v € R? be a unit vector. Show that the directional derivative of f at the origin exists in all
direction, and
(Du)(0,0) = (50,0, 5 0.0)) -u.
u Y 6$ Y ) ay )

Is f differentiable at (0,0)7

Solution. Let u = (cos#,sinf) be a unit vector. Then the directional derivative of f at (0,0) in

direction w is

. fl(tcosf,tsin®) — f(0,0) . t* cos® Osin
D,f)(0,0) =1 =1
(Duf)(0.0) huar t e t(t* cos*  + 2 sin* 0)
B tcos®Osind

= lim —— —— =
t—0+ t2 cos* 0 + sin“ 0

On the other hand,

f(h,O)—f(0,0) f(07k)_f(070)

f2(0,0) = lim - =0 and f,(0,0) = lim - =0;
thus we conclude that (D, f)(0,0) = (f(0,0), f,(0,0)) - u.
Since f,(0,0) = f,(0,0) =0, if f is differentiable at (0,0), we must have
p @) - f0.0-0-@-0)-0-(y-0)] [#*y 0
(z.9)—(0,0) a2 2 (@)= 00) /22 + 12 (zt +y2)

however, by passing to the limit as (z,y) — (0,0) along the curve y = 2%, we find that

0 = lim ’$3 : $2| = !

1
lim — = =~
z—0 4/562 +$4($4 +I4) z—0 24/1 +LE2 2

a contradiction. Therefore, f is not differentiable at (0, 0). o




