Exercise Problem Sets 15
Dec. 23. 2022

Problem 1. Let U <€ R" be open, and f : U — R™ with f = (f1, -, fm)-

1. Suppose that f is differentiable on U and the line segment joining = and y lies in U. Then

there exist points ¢y, --- , ¢, on that segment such that
fity) = fi(x) = (D) () y—x) Yi=1,---,m.

2. Suppose in addition that U is convex (the convexity of sets is defined in Problem 7 in Exercise
11). Show that for each z,y € U and vector v € R™, there exists ¢ on the line segment joining

x and y such that

v [f@) = fW)] =v- (Df)(e)(x —y).
In particular, show that if sup |[(Df)(2)||z@n rm) < M, then

zeU

|f(2) = fF@)lem < M|z —ylgn Va,yeU.

Proof. Let v : [0,1] — R™ be given by v(t) = (1 — t)x + ty. Then by the chain rule, for each
i=1,---,m, (fioy) : [0,1] — R is differentiable on (0,1); thus the mean value theorem (for

functions of one real variable) implies that there exists t; € (0, 1) such that

fily) = filx) = (fio (1) = (fio)(0) = (fio ) (t:) = (Dfi)e) (v (1)) ,

where ¢; = 7(t;). Part 1 is concluded since v'(t;) = y — x.
For v e R™, let g(t) = v - f(ty + (1 — t)z). Then g : [0,1] — R is differentiable; thus the mean

value theorem (for functions of one real variable) implies that there exists 0 < ¢y < 1 such that

v [fly) = f(z)] = g(1) — g(0) = g'(te) = v (Df)(toy + (1 — to)z)(z — y) .

Letting ¢ = toy + (1 — to)x, we conclude that v - [f(z) — f(y)] =v - (Df)(c)(z — y).
Finally, let v = f(y) — f(x). By the discussion above there exists ¢ € Ty such that

1) = f(@)fm = v [f(y) = f(@)] = v (Df)(e)(z —y).

The Cauchy-Schwarz inequality further implies that

1) = f@)En < 1f ()

1/ (y)

f(@) e [(DF)(e) (2 = y)|mm
f(@)[em |(DF) ()| 2@n pomy |2 = Ylln -

< |

<|

Therefore, if sup [ (D f)(z)|z®@rrm) < M, we conclude that
zelU

1f () = f(@)|em < Mz —ylen  Va,yelU. :



Problem 2. Let U < R" be open and connected, and f : U — R be a function such that aaf(a:) =0

Z;
for all z € U. Show that f is constant in U.
Proof. First, we show that if B(a,r) is a ball in U, then f is constant on U. In fact, by the fact that
balls are convex set, Problem El implies that

|fly) = f(=z)| < . [(Df)(2)| 2@ m)lz =yl  Vz,ye Bla,r).

Since ;j(x) = 0 for all € B(a,r), we find that [(Df)(z)|z®rr) = 0 for all z € B(a,r); thus
J
f(y) = f(z) for all z,y € B(a,r).
of

Suppose that f = ¢ in B(a,r). Let E = f~'({c}). Note that the fact %(3:) =0forall z e U
J

implies that D f is continuous on U; thus f is continuously differentiable on U. In particular, f is
continuous; thus f~!({c}) is closed relative to U. Suppose that f~'({c}) = F n U for some closed set
F in R". Next we show that U\F = (J so that f =con U.

Suppose the contrary that U\F # . Let E; = U n Fland Ey =UnF. Then U = E, U E,

and Problem 6 in Exercise 7 shows that
EinEycE\nF=UnF'nF=¢g.

Therefore, Fy n Ey # & for otherwise U is disconnected by Proposition 3.65 in the lecture note. This
implies that there exists € Ey n Ey; thus there exists {x;}{, € U\F such that 2, — x as k — 0.
Since x € U, there exists € > 0 such that B(z,¢) < U; thus the convergence of {x;}72 , implies that
there exists N > 0 such that x; € B(x,¢) for all £ = N. By the discussion above, f is constant on
B(z,€); thus f(xg) = f(x) = c for all K > N, a contradiction to that z; ¢ F. a

Problem 3. Let U < R" be open, and for each 1 <4,j <n, a;; : U — R be differentiable functions.
Define A = [a;;] and J = det(A). Show that

oJ . 0A

g a2 <k<

o tr(AdJ(A)axk> Vi<k<n,

where for a square matrix M = [m;;], tr(M) denotes the trace of M, Adj(M) denotes the adjoint
6mij

matrix of M, and oM denotes the matrix whose (i, j)-th entry is given by

(9:ck 8xk
Hint: Show that

aan 6a12 aaln
Er a2 - Qip ai EEN a1z - Qip a1 - A(n—1)1 EFN
daoy dasa aaQn

oJ p Qg2 -+ Q2p a2 3 Qg3 *** Q2p a1 - Gm-1)2
% = T + Tk 4+ .4 T

k : : : : :
dani 0o 0an1
Txk Ap2 - Gpn an1 D Ap3 " QGpp Qn1 **° Qp-1)n D

and rewrite this identity in the form which is asked to prove. You can also show the differentiation
formula by applying the chain rule to the composite function F o g of maps g : U — R and
F :R™ — R defined by g(z) = (a11(2), a12(x), -, apa(z)) and F(a1r, - , ann) = det ([a;;]). Check

first what or is.
8a7;j




Proof. Let A = [a;;] and Adj(A) = [¢;;]. Then % = ¢;; since the cofactor expansion implies that
ij

det(A) = aic1; + Qioco; + -+ + QinCp; for each 1 <7 < n.
Therefore, for J = det(A), we have

O (2 OF0g) v OF ey i PRI

oxy, oxy, b oa; g oxy, = oxy,
. . 0A n da;j
and the result is concluded from the fact that tr (AdJ(A)—) = > ¢ : D
al'k; ij=1 axk

Problem 4. 1. If f: ACR® - R™and g : B < R™ — R’ are twice differentiable and f(A) < B,

then for xg € A, u,v € R, show that

D*(g o f)(wo)(u, v)
= (D?9)(f (x0)) ((Df) (o) (u), D f (x0)(v)) + (Dg)(f (o)) (D*f) (o) (u,v)) -

2. If p: R® — R™ is a linear map plus some constant; that is, p(x) = Lz + ¢ for some L €
ZR" R™), and f: A< R™ — R* is k-times differentiable, prove that

DX(f o p) (), u®) = (D* ) (plaa)) (Dp) o) (). (Dp) (a) u)

Problem 5. Let f(z,y) be a real-valued function on R?. Suppose that f is of class €' (that is, all

2 2
first partial derivatives are continuous on R?) and ) exists and is continuous. Show that o°f
oxdy 0yox
. o%f % f
ts and = .
exists an zoy  dgea

Hint: Mimic the proof of Clairaut’s Theorem.

Proof. Let (a,b) € R2. For real numbers h, k # 0, define Q : R? - R and ¢ : R* - R by

Qlh, k) = %[f(aJrh,bJrk) ~ flat hib) — flab+ k) + f(ab)]

and
b, y) = flx+hy) = fl,y).
Then Q(h,k) = i[w(a,b + k) — ¢(a,b)]. By the mean value theorem (for functions of one real

hk
variable),
1 0y 1r0f of
h, k)= ——(a,b+ 0,k)k = - | = h,b+ 01k) — =—(a,b+ 01k
QUhok) = 5 (bt Ok = [ S (o hobt 61k) = 5 (a,b+ 6uk)
1 0%f 0% f
= — O>h, b+ 01k)h = O>h, b+ 0,1k
h&x&y(a+ 2l b+ 6:k) 8x6y(a+ 2, b+ 61k)

2
for some function 6; = 0(h, k) and 6, = 0(h, k) satistying 6,0, € (0,1). Since ;xay is continuous,
we find that

m o QUuk) = tim 2L (oot o) = 2 ()
(hk)—(0,0) ~° 7 (hk)—(0,0) 0xdy 20 T xoy



On the other hand, since the limit " kl)ln% Q(h, k) exists,
—(0,0)

o%f
(a,b) = lim Q(h,k) = lim lim Q(h, k)

oxdy (h,k)—(0,0) k—0 h—0
fla+h,b+k)— f(a,b+ k) f(a+ h,b)— f(a,b)
_Eﬂk[ﬁm< h - h ”
_ of af .
E%kb (b+k) - 5j@y

2
exists and equals o’J (a,b). By the definition of partial

thus the limit lim fola, b+ k}i — fz(a,b)

k—0 0xdy
o 0% f . o*f o> f
derivatives, m(a’b) exists and 0y8:z:(a’ b) = 6$6y(a’ b). D

Problem 6. Let U < R”™ be open, and ¢ : U — R" be a function of class ¢2. Suppose that
(DY) (z) € GL(n) for all z € R", and define J = det([Dv¢]) and A = [D¢]~!, where [Dy] is the
Jacobian matrix of 1. Write [A] = [a;;].

1. Show that for each 1 <14, 7,k < n, a;; : R — R is differentiable, and

n

% _ 2 2%
oxy v al‘kal‘s

2. Show the Piola identity

Z%(Jaij)(:c):O Vi<j<nandzelU. (0.1)

i=1 "
Proof. Note that since A = [Dy]™!, we have

AR R
;airﬁl’s_;ax

- 51'37

where 9;, is the Kronecker delta.

1. The product rule implies that

Zn] <aa1r ad)r 82¢r ) —0:
~ oxy, é’:ns al'kal's -

thus

n

o dai 0y 0%y
; oz 015 Z airﬁmkaxs '

Therefore,

- C aazr 5¢r 8 ”Lﬂr ° Qwr
;asj; oxy 0xs ;; W@xkﬁxs - _TSZ_: T OLLOT. 030

(9CLW o 8aij
i a.%'k 51'1@

= 0,; and Z J

and Part 1 follows from the fact that Z 5



. Note that since (D) € GL(n), by the property of the adjoint matrix we obtain that
JA = det([Dy])[Dy]™" = Adj([DY])

which implies that the (4, j)-entry of Adj([Dv]) is Ja;;. Therefore, using the result in Problem
shows that

oJ
61’@-

- 0 s v 0%s
= (Ad (I ) 2 " 0x; 0xy rsZ:1 ‘]amamiaxr ’

thus the product rule implies that

n n n

0 _\9J daij _ N 0%y . 02,
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and the conclusion follows from Clairaut’s Theorem. o



