Exercise Problem Sets 15
Dec. 31. 2022

Problem 1. Let f : R® — R™ be differentiable, and Df is a constant map in Z(R", R™); that is,
(Df)(z)(u) = (Df)(y)(u) for all ,y € R" and u € R”. Show that f is a linear term plus a constant
and that the linear part of f is the constant value of D f.

Proof. Suppose that (Df)(z) = L € B(R",R™), where L is a “constant” bounded linear map
independent of z. Let g(z) = f(x) — Lz. Then (Dg)(z) = (Df)(x) — L = 0 for all z € R"; thus
Problem 2 of Exercise 15 implies that g is a constant function. Therefore,

flz) =Lz =C
for some constant C' which shows that f(z) = Lx + C; that is, f is a linear term plus a constant. o

Problem 2. Let U € R" be open, and f : U — R be of class €* and (D’f)(a) =0for ¢ =1,--- , k—1.
Show that if (D*f)(a)(u,u,--- ,u) > 0 for all non-zero vectors u € R™, then f has a local minimum
at a; that is, there exists § > 0 such that

f(z) = f(a) Vz e B(a,0).

Proof. Let a € U. Since U is open, there exists r > 0 such that B(a,r) < U. Note that g :
B(a,r) x R" — R defined by g(z,u) = (D*f)(x)(u,--- ,u) is continuous since
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and the right-hand side approaches zero as *+ — y and u — v. In particular, by the compactness

of "' = {z € R"||z| = 1}(= BI[0,1]\B(0,1) which is closed and bounded), g(a,) attains its

minimum at some point w € S*7!; that is,

(0.1)
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g(a,u) = g(a,w) VueS" .



Let A = g(a,w) = (D¥f)(a)(w,--- ,w) > 0. Since f is of class €, there exists 0 < § < r such that
MDWM@—%DWX@H<% whenever € B(a,5).

Let x € B(a,d)\{a} be given. By Taylor’s Theorem there exists ¢ € Ta (so that ¢ € B(a,d)) such
that
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Since (D*f)(a)(u, 0 for 1 < j <k —1, we conclude that

F(@) = fla) + (D D)@ —ae = a2 = a) = (@) + gle.o —a).

Note that (@) implies that
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By the fact that g(c,z — a) = g(c, Te—al

H ) |z — al*, we conclude that
a
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fz) > fa) + 55z —df Ve Bla,0)\{a};

thus f(z) = f(a) for all z € B(a, ). o



