Exercise Problem Sets 1
Feb. 17. 2023

Problem 1. Let A € R” be a bounded set, and f : A — R be a function.
1. Show that if f is Riemann integrable on A, then f is bounded.
2. Show that if f is Darboux integrable on A, then f is bounded.

Note that we in some sense use these properties in the proof of the equivalence between the Riemann

integrability and the Darboux integrability, so you’d better not use this equivalence in the proof.

Proof. 1. Since f is Riemann integrable on A, there exists I € R and § > 0 such that if P is a
partition of A satisfying |P| < 0, then any Riemann sum of f for P locates in (I — 1,1+ 1).
Let P = {A1,Ay,--- ,Ax} be a partition of A satisfying |P| < J. For each 1 < k < N, let ¢
be the center of Aj. Then for each 1 </ < N,
I-1<F@wa)+ > flawd)<I+1  Yzel,

1<k<N,k#L

since f(z)v(Ay) + D i<k Nkt T (ce)v(Ay) is a Riemann sum of f for P. In particular,
I—1< f(zx)v(Ay) + 2 FHenv(Ag) <141 VeeAjnA.
1<k<N kL

which further implies that

1
v(A)

{1_ -y TA(ck)y(Ak)} < f(@) <~ L [I+1 - ) TA(cwv(Ak)}

1<k< N,k (A) 1<k<N kAl

Since f is real-valued, TA(ck) is a real number. The numbers M and m defined by

M = max{y(lAz) [I +1- 1Sk§\[7k#7’4(ck)l/(Ak)} ’ 1</l< N} ,
m = min «{ y(lAg) [I —-1- Kk;\[’k#?/*(ck)y(Ak)] ‘ 1</i< N} :

are both real numbers. Moreover, m < f(z) < M for all z € A; thus f is bounded.
2. Let P be a partition of A, and A € P. Since f is real-valued, we must have

—o0 < sup [ (z) <o and — o0 < inf [ (z) < .
2eA TeA

The fact above implies that

(a) if f is not bounded from above, then U(f,P) = oo for all partitions P of A;
(b) if f is not bounded from below, then L(f,P) = —co for all partitions P of A.



Therefore, if f is not bounded, either f f(x)dr = or J f(z) dx = —oo; thus if f is Darboux
A A

]

integrable on A, then f must be bounded.

Problem 2. Let A € R" be a bounded set, and f,g: A — R be functions. Show that
J f(x)dx < J g(z)dr  and J f(x)dx < J g(z)dx.
JA JA A A

Proof. By the fact that 7A < g* on R”, we find that
U(f,P)<U(g,P) and L(f,P)< L(g,P) V partitions P of A.

Since f f(z)dz is a lower bound for {U(f, P) ’77 is a partition of A} and Jg(x) dx is an upper
A Ja

bound for {L(g, P) \73 is a partition of A}, we find that

f_ flz)de <U(f,P)<U(g,P) and L(f,P) < L(g,P) < J g(z)dxr VY partitions P of A.
A Ja

The inequalities above shows that J f(x)dx is a lower bound for {U (9,P) ! P is a partition of A}

and J x) dx is an upper bound for {L fiP) ‘ P is a partition of A} thus we conclude that

JA f(x)dx < JAg(a:) dr  and L f(z)dw < Lg<$) A ]

Problem 3. 1. Let f : [0,1] — R be a bounded monotone function. Show that f is Riemann
integrable on [0, 1].
2. Let f :[0,1] x [0,1] — R be a bounded function such that f(z,y) < f(z,2) if y < z and
f(z,y) < f(t,2) if x < t. In other words, f(z,-) and f(-,y) are both non-decreasing functions
for fixed x,y € [0, 1]. Show that f is Riemann integrable on [0,1] x [0, 1].
Proof. Let € > 0 be given.
1. W.L.O.G., we can assume that f is increasing. Choose n € N so that f(l);f(()) < e. Then if

={0=29 <z <--- <x, =1} is a regular partition of [0, 1]; that is, z} = (k= 1), then
the monotone . .
2 xk xk - Tk 1 % Z
k=1 k=1
and . .
L(f,P) = > flwxa)(@k — 2p1) = % PINICTEE
k=1 k=1
thus
U(P) ~ L P) = [ 4w = Y fon)] = 21 = stao) = L0
k=1 k=1

Therefore, f is Riemann integrable on [0, 1] because of Riemann’s condition.



2. Let P be a partition of [0,1] x [0,1]. Then for A € P,

sup f(z) — inf f(2) < f(Ari) — f(Aw),,

TeA TeEA

where A, and Ay, denote the up-right vertex and the bottom-left vertex of A. Therefore, with

Po={0=xy<z1 < - <z,=1}and P, ={0=yy <1 <--- <y, = 1} denoting regular
k—1

partitions of [0, 1] with x; =y = o we have
UGP) ~ LU P) = 5 B Flaww) = O Flain i)
kl=1 k=1
n—1

Since f(x,y) < f(x,z) if y <z and f(x,y) < f(t,2) if x < t, we have

f(xlﬁyn) - f(l‘kay()) < f(17 1) - f(070) and f(xmyk) - f(mkay()) < f(17 1) - f(070) ;
thus by choosing n » 1 so that %[f(l, 1) — f(0,0)] < ¢, we find that

U(f,P) = L(f,P) < %[ﬂl,l) — f(0,0)] <e.

Therefore, f is Riemann integrable on [0, 1] x [0, 1] because of Riemann’s condition. o

Problem 4. Let f,g : [a,b] — R be functions, where ¢ is continuous, and f be non-negative,

bounded, Riemann integrable on [a,b]. Show that fg is Riemann integrable.

Proof. Let € > 0 be given, and M > 0 be an upper bounds of f + |g|; that is, f(z) + |g(z)| < M for

all z € [a,b]. Since g is uniformly continuous on [a, b], there exists § > 0 such that

9
l9(z) — g(y)| < S0 —a) whenever |z —y| < d

On the other hand, since f is Riemann integrable on [a,b], by Riemann’s condition there exists a
partition P; such that
€
U - L < —.
Let P ={a =29 <z <- - <z, =0b} be a refinement of P; such that ||P|| < d. For each 1 < k < n,

choose & € Ay = [x)_1, x1] such that

f(&r)g(&k) > f;li(fg)(@ ~ 30—

Then with z; 1 denoting the middle point of Ay, by the non-negativity of f we find that

sup (f9)(@) < F&)9(&) + 55— < F& o) + g5 + 55—

3

< f(’fk)g<xk+%) + b—a)



Therefore,

U(fg, P 2 $k+ (zr — Tp—1) + Z
Similarly, if 7, € Ay is chosen so that f(&x)g(&) < inf (fg)(z) + —° _ then
TEAL S(b — a)
L(fg,P 9(@pp1) k_l'k—l)_i'
k:l
Therefore,
- 5
k:l
S £
Z sup f(x) — 1nf f(@) | M(zp — zp-1) + =
—, €A TEA 2
Therefore, fg is Riemann integrable on [a, b]. D

Problem 5. Let f : [a,b] — R be differentiable and assume that f’ is Riemann integrable. Prove
b
that j F(z)de = f(b) — f(a).

Hint: Use the Mean Value Theorem.

b
Proof. Let I = J f'(x)dz, and € > 0 be given. Since f’ is Riemann integrable on [a,b], there

exists § > 0 such that if P is a partition of [a,b] satisfying ||P|| < 0, then any Riemann sum of f
for P locates in (I —e,14+¢). Let P = {a = 29 < 21 < -+ < x, = b} be such a partition. Then
the Mean Value Theorem implies that for each 1 < k < n there exists ¢, € (xp_1,7x) such that
fla) = f(ar-1) = f'(c)(@p — 2p-1); thus

n

f(b) = fla) = Z [f (k) = flzea) Z Y@k — Tp—1) -

k=1 k=1

Note that the right-hand side is a Riemann sum of f for P; thus f(b) — f(a) e I—¢,1+¢) or

I—e< f(b)— fla) <I+e.
Since € > 0 is given arbitrarily, we conclude that I = f(b) — f(a). o

Problem 6. Suppose that f : [a,b] — R is Riemann integrable, m < f(z) < M for all z € [a, b], and

@ : [m, M] — R is continuous. Show that ¢ o f is Riemann integrable on [a, b].

Proof. Let € > 0 be given. Since ¢ : [m, M| — R is uniformly continuous, there exists § > 0 such
that

|<p(y1) — go(yz)‘ < whenever |y; — 1o < and yq,ys € [m, M].

2(b—a)



Since f is Riemann integrable, there exists a partition P = {a = 2y < 1 < --- < x,, = b} such that

€d
U(f,P)—L(f,P) < - (0.1)
4(supyepm,a (W) +1)
We claim that U(po f,P) — L(¢o f,P) <e.
Let m; = [inf ]f(x) and M; = sup f(x). Define
TE[Li—1,T4 $€[:)§¢,1,1‘i]
Note that
0 Y (i —wi) < Y (M —my) (@i — i 0) SU(f,P) = L(f,P);
iECQ ’iECQ
thus (@) implies that
£
(xi - xi—l) < .
;2 4(Supyepm, a0 (W) + 1)
Therefore,
Ulge f.P)=Liga fP) =X | sw (pof)e) = int (oo f)()](mi— o)
i—1 " TE[Ti_1,2; TE[Ti—1,T5
=3 [ sup  ¢(y) — inf Sﬁ(y)} (@i — i-1)
=1 “yelm;, M) ye[m;,M;)
= + )[ sup — inf } T;— Ti_
iezcjl iEZC:Q ye[ms, Mi] W) yelmi, Mi] AWl Y
5
< (@i — i) +2 sup |o(y)| ) (zi — xi1)
Zc: 2(b—a) velm. M) Zc:
<&l 28UD ey [0(V) €
2 A(supyepm i lo(y)] + 1)
Therefore, ¢ o f is Riemann integrable on [a, b]. D

Problem 7. For a function f : [a,b] — R, define the total variation of f on [a,b] by
VP(f) = sup { Z | f(zr) = flzp))| ‘{a =19 < -+ < x, = b} is a partition of [a,b]} :
k=1

Sometimes V(f) is written as | f|1v(jas)-
A function f : [a,b] is said to have bounded variation on [c,d] or be of bounded variation
on [c,d], where [c,d] < [a,b], if V(f) < o0. Complete the following.

1. Let BV([a,b]) = {f : [a,b] = R|V(f) < o0}, called the space of functions of bounded variation
(on [a,b]). Show that BV([a,b]) is a vector space.

2. Is V! a norm on BV([a,b]); that is, does | - |rv(ap) : BV([a,b]) — R defined by | f|| = V2(f)
satisfy Definition 777



3. Recall that €*([a,b]; = {f : [a,b] — R|f’is continuous on [a,b]}. Show that if f €

%*([a,b]; R), then f is of bounded variation.
b
4. Show that if f € €' ([a,b]:R), then VP(f) = f 1£/(z)| dz.

5. Show that if V(f) < o (f is not necessarily differentiable everywhere), then

VA(f) = sup { f " F ) (2) da ‘ 6 € €4([a,b]; R), |¢(x)] < 1 for all z € [a,b],

Proof. For a partition P = {a =29 < x; < --- < z,, = b}, define

Z xk 1)|

We note that the triangle inequality implies that

V(f,P)<V(f,P') whenever P’is a refinement of P .

(0.2)

1. Let f,g € BV([a,b]), ce R, and P = {a = 29 < 27 < -+ < x, = b} be a partition of [a,b].

Then

Vief+9,P) =, |(cf+9)(xk) = (cf + g)(xp-1)]

3

< Z el f(zr) = f(xr-r)| + |g(zp) — g(xk—l)‘]

k=1

= ||V (f.P)+ V(9. P) < [c|VE(f) + VL(g).

Therefore, V2 (cf +g) < |c|VP(f) + V2(g) < oo which shows that cf + g € BV([a, b]). Therefore,

a

BV([a, b]) is a vector space.

2. V% is not a norm since any constant function has zero variation. This violates property (b) in

the definition of norms.

3. Suppose that f is continuously differentiable on [a,b]. By the Extreme Value Theorem,

sup |f'(z)| < co. Therefore, for each partition P = {a = 29 < 1 < -+ < z, = b} of

z€la,b]

[a, b], the Mean Value Theorem implies that

n

Z fa)] <) sup [f/@)|(@n — ap)

k=1 TE[TK—1,7%]

< sup |f'(z Zxk—xkl (b—a) sup |f'(z)] < o0;
k=1

z€la,b] z€[a,b]

thus f € BV([a,b]).



4. Suppose that f is continuously differentiable on [a, b]. Then f’ is continuous on [a, b]; thus |f’|
b
is also continuous on [a, b]. Therefore, [ = f | f(z)| dz exists. Next we show that V?(f) = I.
Let € > 0. By the definition of total variation, there exists a partition P; of [a, b] such that

VAP =5 < V(P

By the definition of integrals, there exists a partition Py of [a, b] such that

U(lf'],P2) < I+g.

Let P3 = {a =29 < x; < --- < x, = b} be the common refinement of P; and P,. By the Mean

Value Theorem, for each 1 < k < n there exists & € (rx_1,x)) such that

flar) = flor—1) = [/ (&) (xr — 21) 5
thus (@) implies that

M=

VI =5 < VIEP) = X [F@n) = floen)] = 2 |F/ (€)@ — i)
k=1

k

I
—

n

<>, swp |f(@)|(zk—ak1) = UL Ps) UL, P2) < T+ .

=1 TE[TK—_1,Tk] 2
Therefore,

VM) <1 +e¢. (0.3)
On the other hand, by the uniform continuity, there exists § > 0 such that

“f/(x)\ - ‘f’(y)” < 2(()%& whenever |r —y| < d and x,y € [a,b] .

)

Let Py ={a=yo <yi < - < ym = b} be a refinement of Py such that |Ps| < §. The Mean

Value Theorem implies that for each 1 < k < m, there exists nx € (yx—_1,yx) such that

k) = 1) = f/Om) (ke — yr—1) -

Then for each 1 < k < m,
5
2(b—a)’

sup | ()] < |f"(m)| +

YE[Yr—1,Yk]

The inequality above further implies that

m

I<U(If'\P) =), sup ||k —va-1)

k=1 YE[Yr—1,Yk]

< ki (‘f/(n’“)‘ T 2(%_(1))(% —Yr-1) < an: | F () = fye—1)| + %
Ve h
Therefore, together with (D.), we conclude that
V() =1 <e.

Since € > 0 is given arbitrary, we find that V?(f) = I. D



