
Exercise Problem Sets 3
Mar. 03. 2023

Problem 1. Let A = [a, b]ˆ [c, d] be a rectangle in R2, and f : A Ñ R be Riemann integrable. Show
that the sets

!

x P [a, b]
ˇ

ˇ

ˇ

ż d

c
f(x, y)dy ‰

ż d

c
f(x, y)dy

)

and
!

y P [c, d]
ˇ

ˇ

ˇ

ż b

a
f(x, y)dx ‰

ż b

a
f(x, y)dx

)

have measure zero (in R1).

Proof. It suffices to show the former case. Define

g(x) =

ż d

c

f(x, y) dy ´

ż d

c

f(x, y) dy .

Then g is non-negative on [a, b]. Moreover, the integrability of f implies that g is Rimenann integrable

on [a, b] and the Fubini theorem implies that
ż b

a
g(x) dx = 0. Therefore, Part 2 of Theorem 6.45

shows that the set
␣

x P [a, b]
ˇ

ˇ g(x) ‰ 0
(

has measure zero. ˝

Problem 2. Define a set S Ď [0, 1] ˆ [0, 1] by

S =
!( p

m
,
k

m

)
P [0, 1] ˆ [0, 1]

ˇ

ˇ

ˇ
m, p, k P N , gcd(m, p) = 1 and 1 ď k ď m ´ 1

)

.

Show that
ż 1

0

( ż 1

0

1S(x, y) dy
)
dx =

ż 1

0

( ż 1

0

1S(x, y) dx
)
dy = 0

but 1S is not Riemann integrable on [0, 1] ˆ [0, 1].

Proof. Note that for each x P [0, 1], then 1S(x, y) ‰ 0 for only finitely many y P [0, 1]. Therefore, for
each x P [0, 1], 1S(x, ¨) is Riemann integrable on [0, 1] and

ż 1

0

1S(x, y) dy = 0 .

Similarly, for each y P [0, 1], then 1S(x, y) ‰ 0 for only finitely many x P [0, 1]; thus for each y P [0, 1],
1S(x, ¨) is Riemann integrable on [0, 1] and

ż 1

0

1S(x, y) dx = 0 .

Therefore,
ż 1

0

( ż 1

0

1S(x, y) dy
)
dx =

ż 1

0

( ż 1

0

1S(x, y) dx
)
dy = 0 .

However, for each partition P of [0, 1] ˆ [0, 1], we have ∆ X S ‰ H for all ∆ P P ; thus U(1S,P) = 1

for all partition P of [0, 1] ˆ [0, 1]. Therefore,
ż

AˆB

1S(x, y) d(x, y) = 1

which, by the Fubini Theorem, implies that 1S is not Riemann integrable on [0, 1] ˆ [0, 1]. ˝



Problem 3. Let f : [0, 1] ˆ [0, 1] Ñ R be given by

f(x, y) =

$

’

&

’

%

22n if (x, y) P [2´n, 2´n+1) ˆ [2´n, 2´n+1), n P N ,

´22n+1 if (x, y) P [2´n, 2´n+1) ˆ [2´n´1, 2´n), n P N ,

0 otherwise .

1. Show that
ż 1

0
f(x, y) dx = 0 for all y P

[
0,

1

2

)
.

2. Show that
ż 1

0
f(x, y) dy = 0 for all x P [0, 1).

3. Justify if the iterated (improper) integrals
ż 1

0

ż 1

0
f(x, y)dxdy and

ż 1

0

ż 1

0
f(x, y) dydx are iden-

tical.

Proof. 1. Since f(x, 0) = 0 for all x P [0, 1], we have
ż 1

0
f(x, 0) dx = 0. Suppose that y P

(
0,

1

2

)
.

Then y P [2´n, 2´n+1) for a unique natural number n ě 2. In this case,

f(x, y) =

$

’

&

’

%

22n if x P [2´n, 2´n+1) ,

´22n´1 if x P [2´n+1, 2´n+2) ,

0 otherwise ,

so that
ż 1

0

f(x, y) dx =

ż

[2´n,2´n+1)

22n dx+

ż

[2´n+1,2´n+2)

´22n´1 dx

= 22n(2´n+1 ´ 2´n) ´ 22n´1(2´n+2 ´ 2´n+1) = 0 .

2. Since f(0, y) for all y P [0, 1], we have
ż 1

0
f(0, y) dy = 0. Suppose tat x P (0, 1). Then

x P [2´n, 2´n+1) for a unique n P N. In this case,

f(x, y) =

$

’

&

’

%

22n if y P [2´n, 2´n+1), n P N ,

´22n+1 if y P [2´n´1, 2´n), n P N ,

0 otherwise ,

so that
ż 1

0

f(x, y) dy =

ż

[2´n,2´n+1)

22n dx+

ż

[2´n´1,2´n)

´22n+1 dx

= 22n(2´n+1 ´ 2´n) ´ 22n+1(2´n ´ 2´n´1) = 0 .

3. By 2, we immediately conclude that
ż 1

0

ż 1

0

f(x, y) dy dx = 0 .

On the other hand, note that if y P
[1
2
, 1
)
, then f(x, y) =

#

4 if x P
[1
2
, 1
)
,

0 otherwise ,
so that



ż 1

0

f(x, y) dx =

ż 1

1
2

4 dx = 2 .

Therefore,
ż 1

0

ż 1

0

f(x, y) dx dy =

ż 1
2

0

ż 1

0

f(x, y) dx dy +

ż 1

1
2

ż 1

0

f(x, y) dx dy =

ż 1

1
2

2 dy = 1

which shows that
ż 1

0

ż 1

0
f(x, y)dxdy ‰

ż 1

0

ż 1

0
f(x, y) dydx for this particular f . ˝

Problem 4. Let A = [a, b] be a closed interval in R, and fk : A Ñ R be a non-decreasing sequence
(that is, fk ď fk+1 for all k P N) of continuous functions such that

lim
kÑ8

fk(x) = f(x) @x P A

for some continuous function f : A Ñ R. Show that

lim
kÑ8

sup
xPA

ˇ

ˇfk(x) ´ f(x)
ˇ

ˇ = 0 .

If we do not assume that f is continuous or if A is replaced by other kind of intervals, is the conclusion
still true?
Hint: Mimic the proof of Lemma 6.64 in the lecture note.

Proof. Suppose the contrary that there exist ε ą 0 such that

lim sup
kÑ8

sup
xPA

ˇ

ˇfk(x) ´ f(x)
ˇ

ˇ ě 2ε .

Then there exists 1 ď k1 ă k2 ă ¨ ¨ ¨ such that

max
xPA

ˇ

ˇfkj(x) ´ f(x)
ˇ

ˇ = sup
xPA

ˇ

ˇfkj(x) ´ f(x)
ˇ

ˇ ą ε .

In other words, for some ε ą 0 and strictly increasing sequence tkju
8
j=1 Ď N,

Fj ”
␣

x P A
ˇ

ˇ f(x) ´ fkj(x) ě ε
(

‰ H @ j P N .

Note that since fk ď fk+1 for all k P N, Fj Ě Fj+1 for all j P N. Moreover, by the continuity of fk
and f , Fj is a closed subset of A; thus Fj is compact. Therefore, the nested set property for compact
sets (see Problem 4 of Exercise 9 from the previous semester) implies that

Ş8

j=1 Fj is non-empty. In
other words, there exists x P A such that f(x)´ fkj(x) ě ε for all j P N which contradicts to the fact
that lim

kÑ8
fk(x) = f(x) for all x P A.

If f is not necessarily continuous, the conclusion is false. A counter-example is given as follows.
Let A = [0, 1] and fk(x) = xk. Then we find that

lim
kÑ8

fk(x) = f(x) @x P A ,

where f : [0, 1] Ñ R is given by

f(x) =

"

0 if x P [0, 1) ,
1 if x = 1 .



Clearly f is not a continuous function on [0, 1]. Moreover, we have

sup
xPA

ˇ

ˇfk(x) ´ f(x)
ˇ

ˇ = sup
xP[0,1)

ˇ

ˇfk(x)
ˇ

ˇ = sup
xP[0,1)

xk = 1

which shows that lim
kÑ8

sup
xPA

ˇ

ˇfk(x) ´ f(x)
ˇ

ˇ ‰ 0. ˝

Problem 5. Let f : [a, b] ˆ [c, d] Ñ R be a continuous function, and F (x) =
ż d

c
f(x, y) dy. Use the

bounded convergence theorem to show that F is continuous on [a, b].

Proof. Let txku8
k=1 Ď A be a sequence converging to c P [a, b], and define gn(y) = sup

kěn
f(xk, y). By

the continuity of f , lim
nÑ8

gn(y) = lim sup
kÑ8

f(xk, y) = f(c, y) for all y P [c, d]; thus tgnu8
n=1 converges

pointwise to f(a, y). Since tgnu8
n=1 is a decreasing sequence, Theorem ?? implies that

lim
nÑ8

ż

[c,d]

(
gn(y) ´ f(a, y)

)
dy = 0 ;

thus by the fact that f(xn, y) ď gn(y) for all y P [c, d];

lim sup
nÑ8

ż d

c

(
f(xn, y) ´ f(a, y)

)
dy ď lim

nÑ8

ż

[c,d]

(
gn(y) ´ f(a, y)

)
dy = 0 .

As a consequence, lim sup
nÑ8

F (xn) ď F (a). Since the sequence txnu8
n=1 can be chosen arbitrarily, we

conclude that lim sup
xÑa

F (x) ď F (a).
On the other hand, defining hn(y) = inf

kěn
f(xk, y), we have hn ď hn+1 for all n P N and thnu8

n=1

converges pointwise to f(a, y) on B; thus

lim
nÑ8

ż

[c,d]

(
f(a, y) ´ hn(y)

)
dy = 0 .

By the fact that hn(y) ď f(xn, y) for all y P [c, d], we find that

lim sup
nÑ8

ż d

c

(
f(a, y) ´ f(xn, y)

)
dy ď lim

nÑ8

ż

[c,d]

(
f(a, y) ´ hn(y)

)
dy ď 0 ;

thus F (a) ´ lim inf
nÑ8

F (xn) ď 0. ˝

Problem 6 (The multiple integral version of Theorem 6.65 in the lecture note). Let A be a closed
rectangle in Rn, and fk : A Ñ R be a decreasing sequence of bounded functions. Show (without
applying Theorem 6.69 and 6.70 in the lecture note) that if lim

kÑ8
fk(x) = 0 for all x P A, then

lim
kÑ8

ż

A

fk(x) dx = 0 .

Conclude the Monotone Convergence Theorem (Theorem 6.69 in the lecture note) and the Bounded
Convergence Theorem (Theorem 6.70 in the lecture note) using the this conclusion of convergence.



Proof. Let ε ą 0 be given. Similar to the proof of Lemma 6.63 in the lecture, for each k P N there
exists a continuous function gk : A Ñ R such that 0 ď gk ď fk and

ż

A

fk(x) dx ă

ż

A

gk(x) dx+
ε

2k+1
. (0.1)

Define hk = mintg1, ¨ ¨ ¨ , gku. Then hk is continuous on A, hk ě hk+1 (that is, thku8
k=1 is a decreasing

sequence of funtions), 0 ď hk ď gk ď fk for all k P N, and lim
kÑ8

hk(x) = 0 for all x P A. Again, by
Problem 5 (with A replaced by closed rectangle) we find that thku8

k=1 converges to the zero function
in the following sense:

lim
kÑ8

sup
xPA

ˇ

ˇhk(x)
ˇ

ˇ = 0 ;

thus there exists N ą 0 such that
ż

A

hk(x) dx ă
ε

4
@ k ě N . (0.2)

On the other hand, for 1 ď ℓ ď k, maxtgℓ, ¨ ¨ ¨ , gku ď maxtfℓ, ¨ ¨ ¨ , fku = fℓ; thus
ż

A

(
maxtgℓ, ¨ ¨ ¨ , gku(x) ´ gℓ(x)

)
dx ď

ż

A

fℓ(x) dx ´

ż

A

gℓ(x) dx ă
ε

2ℓ+1
.

Moreover, for each 1 ď j ď k and x P A,

0 ď gk(x) = gj(x) +
(
gk(x) ´ gj(x)

)
ď gj(x) +

(
max

␣

gj(x), ¨ ¨ ¨ , gk(x)
(

´ gj
)

ď gj(x) +
k´1
ÿ

ℓ=1

(
max

␣

gℓ, ¨ ¨ ¨ , gk
(

(x) ´ gℓ(x)
)
,

so minimizing the right-hand side over all 1 ď j ď k implies that

0 ď gk(x) ď hk(x) +
k´1
ÿ

ℓ=1

(
maxtgℓ, ¨ ¨ ¨ , gku(x) ´ gℓ(x)

)
@x P A .

As a consequence,

0 ď

ż

A

gk(x) dx ď

ż

A

hk(x) dx+
k´1
ÿ

ℓ=1

ε

2ℓ+1
ď

ż

A

hk(x) dx+
ε

2
;

thus (0.1) and (0.2) imply that

0 ď

ż

A

fk(x)dx ă ε @ k ě N .

Now suppose that tfku8
k=1 is a monotone increasing sequence of Riemann integrable functions

on A and for some Riemann integrable function f we have lim
kÑ8

fk(x) = f(x) for all x P A. Define
gk(x) = f(x) ´ fk(x). Then tgku8

k=1 is a decreasing sequence of bounded function and lim
kÑ8

gk(x) = 0

for all x P A; thus
lim
kÑ8

ż

A

gk(x) dx = 0 .



Nevertheless, since gk = f ´ fk and both f and fk are Riemann integrable on A, we have
ż

A

gk(x) dx =

ż

A

gk(x) dx =

ż

A

f(x) dx ´

ż

A

fk(x) dx

so that we conclude that lim
kÑ8

ż

A
fk(x) dx =

ż

A
f(x) dx.

Now suppose that tfku8
k=1 is a sequence of Riemann integrable functions such that

ˇ

ˇfk(x)
ˇ

ˇ ď M

for all k P N and x P A, and lim
kÑ8

fk(x) = f(x) for all x P A. Define gk : A Ñ R by gk(x) =

sup
ℓěk

ˇ

ˇfℓ(x) ´ f(x)
ˇ

ˇ. Then tgku8
k=1 is a decreasing sequence of bounded functions and lim

kÑ8
gk(x) = 0

for all x P A. Therefore,
lim
kÑ8

ż

A

gk(x) dx = 0 .

On the other hand,
ˇ

ˇfk(x) ´ f(x)
ˇ

ˇ ď gk(x) for all k P N and x P A; thus the integrability of fk and f

implies that
ż

A

ˇ

ˇfk(x) ´ f(x)
ˇ

ˇ dx =

ż

A

ˇ

ˇfk(x) ´ f(x)
ˇ

ˇ dx ď

ż

A

gk(x) dx

and the Sandwich lemma further shows hat

lim
kÑ8

ż

A

ˇ

ˇfk(x) ´ f(x)
ˇ

ˇ dx = 0 .

Therefore, lim
kÑ8

ż

A
fk(x) dx =

ż

A
f(x) dx. ˝


