Exercise Problem Sets 3
Mar. 03. 2023

Problem 1. Let A = [a,b] x ¢, d] be a rectangle in R? and f : A — R be Riemann integrable. Show
that the sets

{eelotl] [ sear# [fwna) wa {yeleal] [ sz [ 1)
have measure zero (in R').

Proof. 1t suffices to show the former case. Define

o) = [ s [ sy

Cc

Then g is non-negative on [a, b]. Moreover, the integrability of f implies that g is Rimenann integrable
b

on [a,b] and the Fubini theorem implies that J g(x)dr = 0. Therefore, Part 2 of Theorem 6.45

shows that the set {z € [a,b]| g(z) # 0} has measure zero. a

Problem 2. Define a set S < [0, 1] x [0, 1] by

S:{(ﬁ,ﬁ)e[(),l] X [0,1])m,p,keN,gcd(m,p)zlandlgkzém—l}.

Ll (Ll 1s(z,y) dy)d:r; = Ll (Ll 1s(z,y) dﬂ:)dy —0

but 1g is not Riemann integrable on [0, 1] x [0, 1].

Show that

Proof. Note that for each x € [0, 1], then 1g(x,y) # 0 for only finitely many y € [0, 1]. Therefore, for

each x € [0, 1], 1s(z, -) is Riemann integrable on [0, 1] and

1
f 1s(z,y)dy = 0.
0

Similarly, for each y € [0, 1], then 1g(x,y) # 0 for only finitely many z € [0, 1]; thus for each y € [0, 1],

1s5(z,-) is Riemann integrable on [0, 1] and

1
J 1s(z,y)dx =0.
0

Ll (Ll 15(x,y) dy)da: = Ll (Ll 1s(x,y) dﬁ)dy —0.

However, for each partition P of [0,1] x [0,1], we have A n S # ¢ for all A € P; thus U(1lg,P) =1
for all partition P of [0, 1] x [0, 1]. Therefore,

f 1s(a,y) d(w,y) = 1
AxB

Therefore,

which, by the Fubini Theorem, implies that 1g is not Riemann integrable on [0, 1] x [0, 1]. a



Problem 3. Let f:[0,1] x [0,1] — R be given by
22 if (x,y) e 27,27 ) x 277 27 n e N
fleyy) =< =221 if (z,y) e 27,27 ) x 27771 27) ne N,
0 otherwise .

1
1. Show that f f(z,y)dx =0 for all y € [0, %)
0

1
2. Show that J f(z,y)dy =0 for all x € [0,1).
0

1,1 1,1
3. Justify if the iterated (improper) integrals f f f(z,y)dxdy and f f f(z,y) dydzx are iden-
0 Jo 0 Jo

tical.
1

Proof. 1. Since f(x,0) = 0 for all = € [0,1], we have J f(z,0)dz = 0. Suppose that y € (O, %)

0
Then y € [27",27"!) for a unique natural number n > 2. In this case,
22 if g e [277, 27
flx,y) =< =221 if g e [27nt1 272y

0 otherwise ,

so that

1
f f(xy y) dl’ = J 2277, dl’ -+ f 72271—1 dl’
0 [2*”,2*n+1) [277z+1’27n+2)

— 22n(2—n+1 _ 2—n) o 22n—1(2—n+2 o 2—n+1) — 0‘

2. Since f(0,y) for all y € [0,1], we have fl f(0,y)dy = 0. Suppose tat x € (0,1). Then
z € [27", 27" for a unique n € N. In this Ocase,
22 ifye (27,27 neN,
fla,y) =< =221 ifye 271 27) neN,
0 otherwise ,

so that

1
J flx,y)dy = f 22" dx + J —22n 1l g
0 [2777,72777,«&»1) [2*”*172*’”)

— 22n(27n+1 - 2771) - 22n+1 (2771 - 27n71> — O ]

3. By 2, we immediately conclude that

Ll Llf(x,y)dydx =0.

1
4 ifres1
On the other hand, note that if y [%,1), then f(z,y) = { ifoelz1),

so that
0 otherwise,



Jl fz,y)dx = ﬁl4dx =2.

0 2
Therefore,
1l 1 m 1l 1
| | tevardy=[" | swodedys | | fogdeay= [ 251
0 Jo 0o Jo 3 Jo 3
11 11
which shows that f J f(z,y)dxdy # J J f(z,y) dydz for this particular f. D
0 Jo 0 Jo

Problem 4. Let A = [a,b] be a closed interval in R, and f; : A — R be a non-decreasing sequence
(that is, fr < fxs1 for all £ € N) of continuous functions such that

lim fy(x) = f(z) VreA

k—0o0
for some continuous function f: A — R. Show that

lim sup | fi(z) — f(z)| = 0.

k—0 zeA

If we do not assume that f is continuous or if A is replaced by other kind of intervals, is the conclusion
still true?

Hint: Mimic the proof of Lemma 6.64 in the lecture note.

Proof. Suppose the contrary that there exist € > 0 such that

lim sup sup |fk(a:) — f(a:)| > 2¢.

k—oo x€A

Then there exists 1 < k; < ky < -+ - such that

mae| i, (@) = ()] = sup i, (@) ~ £(x)]| > <.

In other words, for some ¢ > 0 and strictly increasing sequence {k;}72, < N,
Fi={zecA|f(z)- fi,(x) e} #F  VjeN.

Note that since f; < fr41 for all k e N, F; 2 Fjy for all 7 € N. Moreover, by the continuity of fj
and f, Fj is a closed subset of A; thus Fj is compact. Therefore, the nested set property for compact
sets (see Problem 4 of Exercise 9 from the previous semester) implies that ﬂ;ozl F} is non-empty. In
other words, there exists x € A such that f(z) — fi,(z) = ¢ for all j € N which contradicts to the fact
that klgglo fr(x) = f(x) for all z € A.

If f is not necessarily continuous, the conclusion is false. A counter-example is given as follows.
Let A=10,1] and fi(z) = 2*. Then we find that

lim fy(x) = f(x) Ve A,

k—0o0

where f:[0,1] — R is given by
0 ifzel0,1),
f<x)_{1 ifx=1.



Clearly f is not a continuous function on [0, 1]. Moreover, we have

sup | fr(z) — f(z)| = sup |fu(z)| = sup 2" =1
zeA z€[0,1) z€[0,1)

which shows that lim sup |fi(z) — f(z)| # 0. o

k—0 zeA

d
Problem 5. Let f : [a,b] x [¢,d] — R be a continuous function, and F(z) = J f(z,y)dy. Use the

bounded convergence theorem to show that F' is continuous on [a, b].

Proof. Let {xp}7; < A be a sequence converging to ¢ € [a, b], and define g,(y) = sup f(zx,y). By
k=n
the continuity of f, lim g,(y) = limsup f(zx,y) = f(c,y) for all y € [c,d]; thus {g,}>_; converges
n—00 k—o0
pointwise to f(a,y). Since {g,}°, is a decreasing sequence, Theorem ?? implies that

lim (9n(y) — fla,y)) dy = 0;

=% Jle,d]

thus by the fact that f(z,,y) < g,(y) for all y € [¢, d];

fimsup | (F(wn9) = fla.) dy < i [ (9a(0) = o) dy = 0.

n—aoo c n—w ~ [C,d}

As a consequence, limsup F/(z,) < F(a). Since the sequence {z,}> ; can be chosen arbitrarily, we
n—0o

conclude that limsup F(z) < F(a).

r—a

On the other hand, defining h,(y) = gnf f(zk,y), we have h,, < h,41 for all n € N and {h,},
=n
converges pointwise to f(a,y) on B; thus

lim (f(a,y) = ha(y)) dy = 0.

=% Jle,d)

By the fact that h,(y) < f(z,,y) for all y € [¢,d], we find that

d
o [ (Fa,) = $Genn)) dy < i [ (7a) = o) dy <0,

n—0o0 c n—w > [Cﬂd]

thus F'(a) — liminf F(z,) < 0. o

n—00

Problem 6 (The multiple integral version of Theorem 6.65 in the lecture note). Let A be a closed
rectangle in R", and fr : A — R be a decreasing sequence of bounded functions. Show (without

applying Theorem 6.69 and 6.70 in the lecture note) that if klirn fr(x) =0 for all x € A, then
—00

Conclude the Monotone Convergence Theorem (Theorem 6.69 in the lecture note) and the Bounded

Convergence Theorem (Theorem 6.70 in the lecture note) using the this conclusion of convergence.



Proof. Let € > 0 be given. Similar to the proof of Lemma 6.63 in the lecture, for each k € N there

exists a continuous function g : A — R such that 0 < g, < fr and

5
J fr(z)de < f gr(x) dx + S (0.1)
Ja A
Define hy = min{gi,--- , gx}. Then hy is continuous on A, hy, = hyy1 (that is, {hx};2, is a decreasing

sequence of funtions), 0 < hy < gr < fi for all k£ € N, and ]}im hi(z) = 0 for all z € A. Again, by
—00

Problem 5 (with A replaced by closed rectangle) we find that {hs}{2; converges to the zero function

in the following sense:

lim sup |y ()| = 0;

k—o0 zeA

thus there exists N > 0 such that

Jhk(x)dx<§ Vk>N. (0.2)
4 1

On the other hand, for 1 < ¢ < k, max{ge, -+, gx} < max{fs, -, fx} = fo; thus

3

JA (max{ge, -, gr}(x) — ge(2)) dz < _L fo(z) dw — fA ge(x) dx < ST

Moreover, for each 1 < j < k and x € A,
0 < gi(x) = g;(x) + (g(2) — g;(2)) < g;(2) + (max {g;(x),- -, gr(z)} — g;)

<@+ Y (max {ge - g h@) — gu(@))

so minimizing the right-hand side over all 1 < j < k implies that

k—1

0 < g(z) < hy(z) + Z (max{gs, -, g} (x) — go()) VeeA.

(=1

As a consequence,
L N .
O<fgk(x)dx<fhk(x)dx+ —<Jhk($)dx+—;
A A ;1 2¢+1 A 9

thus (@) and (@) imply that

Oéffk(x)dx<€ VE=N.
Ja

Now suppose that {f};2, is a monotone increasing sequence of Riemann integrable functions
on A and for some Riemann integrable function f we have k}im fr(x) = f(z) for all x € A. Define
—00
gr(x) = f(z) — fr(z). Then {gi}, is a decreasing sequence of bounded function and klim gr(z) =0
—00

for all x € A; thus
lim | gy(z)dr=0.
A

k—o0



Nevertheless, since g, = f — fr and both f and f; are Riemann integrable on A, we have

L ge(z) dz = L ge(z) dz = L F() da — L fuolz) dz

so that we conclude that lim f fr(x)de = f f(z)dz.
k—oo Jag A

Now suppose that {f}~; is a sequence of Riemann integrable functions such that | fi,(z)| < M
for all k € N and z € A, and klim fr(x) = f(x) for all x € A. Define g, : A — R by gx(z) =
—0

Seug | fe(z) — f(x)|. Then {gi};2, is a decreasing sequence of bounded functions and klirglo gr(x) =0
> =

for all x € A. Therefore,

k—o0

lim J gr(x)dr =0.
A

On the other hand, ’fk(:c) — f(:z:)’ < gr(x) for all k € N and x € A; thus the integrability of f, and f
implies that

[ 15 = rwldr= | i) - @ dr < [ ooy

and the Sandwich lemma further shows hat

Therefore, lim f fr(z)dx = j f(z) dux. o
k—w Jap A



