Exercise Problem Sets 4
Mar. 10. 2023

Problem 1. Let A € R”, B € R™ be Riemann measurable sets, and f : Ax B — R be non-negative,

uniformly continuous and integrable on A x B. Define F(x J f(z,y) dy.

1. Show that if B is bounded, then F': A — R is continuous. How about if B is not bounded?

2. Let f have the additional property that for each ¢ > 0, there exists N > 0 such that
‘J (f/\k)(:zc,y)dy—Jf(m,y)dy‘<5 Vk>=Nandze A.
BAB(0,k B

Show that F' is continuous on A. In particular, show that if f(x,y) < g(y) for all (z,y) € Ax B,

and g is integrable on B, then F'is continuous.

Proof. 1. If B is bounded, then B has volume. Let € > 0 be given. By the uniform continuity of f,
there exists 6 > 0 such that

3

[F ) = flazw)| < Zopy

V|(z1,01) — (22,52)| <6 and 21,20 € A, y1,y2 € B.

Therefore, if |1 — 23] < § and z1, 29 € A,

| :L‘Q ‘_ ‘J‘ xla 1'2, J ‘f I,y fL'Q, ‘dy

S| 5 Fdr < ———
JB v(B)+1 V(B)+1
This implies that F' is uniformly continuous on A.

If B is unbounded, then the argument above does not apply. In fact, consider the case

_ VT _ _
f(x,y)—1+x2y2, A=10,1 and B=R.

Then f is non-negative and uniformly continuous on A x B (by Problem 3 of Exercise 12 in
the first semester). Note that F'(0) = 0 while if 2 > 0,

TV

1—|—:1:2y

Y= T

y=n T

dy = \/75 arctan(zy)

=Lf(:v7y)dy=

Therefore, the Tonelli Theorem implies that

1

LXBf(az,y)d(:c,y)zL( Bf(x,y)dy)dg;:L %d$:27r<oo

which shows that f is integrable on A x B. However, F' is not continuous at x = 0.



2. Let € > 0 be given. Since f has the property mentioned above, there exists N > 0 such that
‘f (f/\k:)(x,y)dy—ff(x,y)aly‘<E Vk>=Nandze A.
BAB(0,k B 3

By the uniform continuity of f on A x B, there exists ¢ > 0 such that

‘f(xlayl) - f(anyQ)‘ < v ‘(mlayl) - (x27y2)| < ¢ and T1,T2 € Avylay2 €.

Wl M

Suppose that |r; — x9| <, 1,29 € A and y € B.
(a) If f(z1,y) and f(xq,y) are both not greater than N, then
((f AN)(@1,y) = (f AN)(@2,9)| = [ f21,y) = flr2y)| <e.
(b) If f(z1,y) and f(xs,y) are both greater than N, then

|(fAN)(x1, y)— (fAN)(z2,y ]_|N N|=0.
(¢) If one and only one of f(z1,y) and f(xs,y) is greater than N, then
(f AN)(21,9) = (f AN)(@2,9)] < | f(21,) = fl22,9)] <&
Case (a), (b) and (c) show that

((f AN (@1, y) = (f AN)(22,9)] <

9
3v(B(0,N)) Vv — a9 < d,m1,m€Aand yeB.

Therefore, if 21,25 € A and |z — z3| < 0,
Pl - Fa| <] [ (A dy— | fenw)dy]
BnB(0,N B
+U (fAN)(asz,y)dy—J f(ﬂﬁz,y)dy‘
BAB(0,N) B
[ Ay | <fAN><x2,y>dy\
BAB(0O,N BAB(0,N)

19 19
<—+—+J |(f AN)(21,y) = (f AN)(22,)|dy <
3 3 JeaBO,N)

This implies that F' is uniformly continuous on A.

Now suppose that f(z,y) < g(y) for all (z,y) € A x B, and g is integrable on B. Then

lim (gnE)(y)dy = J 9(y) dy;

k=% JpAB(0,k) B

thus there exists N > 0 such that

‘f (gAk)(y)dy — J 9(y) dy‘ <e whenever k> N.
BAB(0k B



Therefore, for all k > N and x € A,
” (fAk)(x,y)dy—f f(fv,y)dy‘
BAB(0,k) B

< ‘ meB - (fAE)(x,y)dy — meB(O,k) flx,y) dy‘ + J f(x,y)dy

BAB(0,k)°

LB (f ARz, y) — <x,y>|dy+j 9(y) dy

BnB(0,k)t

[f () — ] dy + f 9(y) dy

J;yEBmB 0,k) | f(z,y)>k} BnB(0,k)°

[9(y) — ] dy + f 9(y) dy

BAB(0,k)°

<[ w-@anlas [ g
BnB(0,k)

BnB(0,k)°

= JBg(y) dy — L B(Ok)(gA k)(y)dy < e.

This shows that f satisfies the condition mentioned in 2, so F' is continuous on A. =

LyEBmB 0,k) | g(y)>k}

Problem 2. Let f: R — R be a Riemann measurable function, and F' : R — R be defined by

= fRf(y) cos(z — y) dy

whenever the integral exists. Show that if the function f is integrable, then F' is defined on R and is

differentiable on R with derivative

= [ 1) costa =)y == | fw)sinte =)y

Proof. Let x € R be given. Since f is Riemann measurable, the function g : R — R defined by
g(y) = f(y) cos(xz — y) is Riemann measurable and |g(y)| < |f(y)]| for all y € R. Since f is integrable,
the comparison test implies that g is integrable. Therefore, F' is defined everywhere on R.

Let {hx}{; be a non-zero sequence with limit 0. Define
cos(x + hy —y) —cos(z —y
guly) = () L hZ oy,

Then for all y € R, lim gy(y) = f(5) —(cos(x — y)) = —f(y)sin(z — y).

Since ‘di coS x‘ < 1, the Mean Value Theorem implies that
Y
| cos(z + by, — y) — cos(z — y)| < |hi|.

Therefore,
e ()] < |f(v)] VreR.

Since f is integrable on R, | f| is integrable on R; thus the Dominated Convergence Theorem implies
that

lim Pz + hy) — F(z) = lim | grx(y)dy = —f f(x)sin(x — y) dy .
k—o0 hi k- Jp R



The equality above shows that for each non-zero sequence {hy};>; with limit 0, the limit

lim
k—00 h

Jf sin(z — y) dy

exists. By the definition of the limit of functions,

F h
lim (x +

h—0

R Ry D

Problem 3. Let f : R — R be an integrable Riemann measurable function, and F' : R — R be

defined by
f f(y) cos(zy) d

(which exists for all x € R since f is integrable). Show that if the function g(z) = = f(z) is integrable,
then F is differentiable on R and

_ JR f(a:)aaycos(xy) dr = - JR of (z) sin(zy) dz .

Proof. Let y € R be given, and {hs}{2; be a non-zero sequence with limit 0. Define
cos(x(y + hi)) — cos(zy
i) = f(a) YA = costzy)
k
Then for all z € R, klim gr(x) = f(a:);y(cos(my)) = —xf(x)sin(zy).
—00

d
Since ‘% coS x‘ < 1, the Mean Value Theorem implies that

| cos(z(y + hi)) — cos(zy)| < |zhyl .
Therefore,
gk (2)] < |z f(z)| =|9(z)] VzeR.

Since ¢ is integrable on R, |g| is integrable on R; thus the Dominated Convergence Theorem implies
that

lim Fly+he) = Fly) = lim | hg(x)de = —J zf(x)sin(zy) dx.

k—0o0 hk k—o0 R

The equality above shows that for each non-zero sequence {hy};>; with limit 0, the limit

F hy) — F
lim (y + h) ) = —J xf(z)sin(zy) dx
k—o0 hk R
exists. By the definition of the limit of functions,
F h)—F
lim y+1) ) = —J zf(x)sin(zy) dx. o
h—0 h R
Problem 4. Let f : R?> — R be defined by
e Weiny .
— ify#0,
flz,y) = Y
1 ify=20.

Complete the following.



1. Show that f,(x,y) is continuous everywhere, and show that f(x,-) is integrable on [0, ) for

all x > 0.

1

2. Define F(x J f(z,y)dy for x > 0. Show that F'(z) = T

3. Show that F(z) = g —tan~! z if x > 0, and conclude that

Proof. 1. Note that if y # 0, f.(x,y) = e ®siny while f,(z,0) = 0. Clearly f, is continuous on R?

except perhaps on the z-axis. On the other hand, since ( l)mé : f(z,y) = 0, we conclude that
z,y)—(a,0
fz is also continuous on the x-axis. Therefore, f, is continuous everywhere.

Let x > 0 be given. Then |f(a:, y)’ < e, Since the right-hand side function, for given x > 0,

is integrable on [0, ), the comparison test implies that f(z,-) is integrable on [0, o).

2. Let 2 > 0 be given, and {h};2; be a non-zero sequence with limit 0. W.L.O.G., we can assume

that |hy| < g since « > 0. Define

e Yhr — 167% siny
gr(y) = hi

ity #0,
0 ify=0.

—yhr _ zy
l < e? |y|; thus

The Mean Value Theorem implies that ‘6

‘ ¥

‘gk(y) <

Since the right-hand side function, for given x > 0, is integrable on [0,00), the Dominated

Convergence Theorem implies that

T W, e
0 oe}
= f lim gx(y) dy = —J e sinydy
0 k—00 0

Integrating by parts, by the fact x > 0 we find that

y=00 0
— f e " cosydy

0
J e Wsinydy = —e " cosy
y=0 0

0

y=00 o0
=1- :r;[e’xy sin y‘ + :L‘J e Ysinydy
y=0 0

thus we conclude that




for all x > 0 and non-zero sequence {hj};>, with limit 0. Therefore, for > 0 the limit

Flo+h) = Flz) exists (so that F is differentiable on (0,0)) and

lim

h—0
. F(z+h)— F(x) 1

F’(x):}gr(l) - =i Ve >0.

By the (generalized version of) Fundamental Theorem of Calculus, for a,b > 0 we have

x=>b
= arctana — arctanb.

b b
1
F(b) — F(a) :L F'(z)dx = —L a2 dr = arctanxx:a
Note that for a > 0 we have
0 —ay jy=o0 1
L e -+
0 —a ly=0 a

thus lim F'(a) = 0 by the Sandwich lemma. Therefore, for x > 0

a—00

. : 7r
F(z) = ah_}rr;) [F(z) — F(a)] = all_rgo (arctana — arctan ) 5 arctan z .

Finally, we show that F'(0) = lim F(z). Let € > 0 be given. Since
z—0

0 ,—e "cosy —xe Psiny . .

S cony) = (77~ Dsing,

integrating by parts shows that for all n > 0,

0 . 1 /ey . —2Y y=00
f (e — 1>smy dy = _< e COS% re %Y siny 1 cos y)
" Y Y 4 +1 y=n
Q0 — _ .
—e " cosy —xe siny > 1
—I—L ( 221 + cosy y2dy.

By the fact that
1
v < § <3,

‘ —e "Wcosy —xe Wsiny n ‘ <
cos
2 +1 yI s

we have

J (e_w_l)smydy)gf —dy+—=—.
n Y n Y n.on

Therefore, for all n > 0,

P = PO =] [ - )™ gy

(D .

‘f B smydy‘ (e_xy—l)smydy
6 _m’—l 6
\J(l )dy+——n+—+—
0 x n

so that 6
limsup |F(z) — F(0)| < — Vn>0.
n

z—0t



Since n > 0 is given arbitrarily, we conclude that limsup |F/(z) — F(0)| = 0 which shows that

z—07F
lim+ F(z) = F(0). As a consequence,
z—0
* sinz . . ™ T
L " dz = F(0) = mlir& F(z) = xlir(l)l+ (§ — arctanz) = 3 D

Problem 5. Let (M,d) and (N, p) be metric spaces, A < M, and f; : A — N be a sequence of
functions such that for some function f : A — N, we have that for all z € A, if {z;}72, < A and

xrr — x as k — oo, then
lim fy,(zx) = f(2).
k—o0

Show that

1. {fx}{, converges pointwise to f.

2. If { T };il is a subsequence of {f}}7,, and {z;}72, € A is a convergent sequence satisfying
that lim z; = , then
j—o0

lim f. (2;) = f(z).

J—©

3. Show that if in addition A is compact and f is continuous on A, then {fx}{, converges

uniformly f on A.
Proof. 1. Let x € A be given. Define {z;}{_; by x; = x for all kK € N. Then Igim T, = x; thus
—00
lim fp(z) = im fp(zx) = f(x)
k—o0 k—o0
which shows that {f}72, converges pointwise to f.

2. Let {fi;}72, be a subsequence of {fy};,, and {x;}32, be a convergent sequence with limits z.

Define a new sequence {y,}72, by

Y1, 5 Yk = L1y Yky+1, " 3 Yky = T2, "',yk4+1;"'7yk2+1:$£+1,"';

that is, the first k; terms of {y,};2, is z1, the next (ko — ki) terms of {ys};2; is x2, and so on.

Then {ye};>, converges to x;
i fo(ye) = f(x).
—00

Since {fkj (xj)};ozl is a subsequence of {fg(yg)}z.;l, JlLrEO Ji,(z5) = f(x).

3. Suppose the contrary that {f;};~; does not converge uniformly to f on A. Then there exists
e > 0 such that for each k > 0 there exist ny > k (W.L.O.G. we can assume that ngq > ny
for all £ € N) and xj € A such that

p(fnk(xk’)a f(xk)) = €.

By the compactness of A, there exists a convergent subsequence {zy,}72, of {zx};2,. Suppose

that lim x, = x. Since
J—0

p(fnkj(xkj)7f(xkj)) =€ VjEN,



by the fact that lim fp, (7x;) = f(z) and that f is continuous at z, we obtain that
j—0

p(f(x), f(x))
= lim p(f(z1,), f(z)) > lim inf

Jj—0

1

P(fo (@) [8,)) = p(f, (21, /()]

Y

N ™

a contradiction. o

Remark. Using the inequality

p(fk(xk)’ f($)) < p(f(a:k),f(x)) + Supp(fk(l'), f(m)) )

€A

we find that if {fx};>; converges uniformly to a continuous function f, then klim fr(xy) = f(z) as
—00

long as klim xr = x. Together with the conclusion in 3, we conclude that
—00

Let (M,d), (N, p) be metric spaces, K € M be a compact set, f : K — N be

a function for each k € N, and f : K — N be continuous. The sequence {f;}r=1

converges uniformly to f if and only if ]}im fr(xr) = f(x) whenever sequence
—00

0
{z}, € K converges to x.

Problem 6. Let (M, d) be a metric space, A € M, (N, p) be a complete metric space, and fi, : A - N
be a sequence of functions (not necessary continuous) which converges uniformly on A. Suppose that

aec A’ and

lim fi.(z) = Ly

r—a

exists for all k € N. Show that {L;};>, converges, and

lim lim fi(x) = lim lim fy(z).

r—a k—0o0 k—o0 z—a

Proof. Let € > 0 be given. Since {f;},~; converges uniformly, there exists N; > 0 such that

whenever k,{ > N, and x € A. (%)

p(fe(@), folz)) <

w| ™

If a € cl(A), then the inequality above implies that

p(Ly, Le) = lim p(fu(x), fe(x)) < = <& whenever k,{ > Ny;

Wl M

thus {Lx}2, is a Cauchy sequence in (N, p). Therefore, { Ly }72, converges. Suppose that klim Ly=1L
—00

and { fx}72; converges uniformly to f. There exists Ny > 0 such that p(Lg, L) < % whenever k > Ns.

Moreover, passing to the limit as £ — oo in (), we obtain that

whenever k> Nyand z e A.

p(fi(2), f(z)) <

Wl M



Let n = max{Ny, Na}. Since lim f,(z) = L,, there exists 6 > 0 such that

p(fn(x)v Ln) <

Then if z € B(a,d) n A\{a},
p(£(@).L) < p(F(@). Ju(@)) + p(fule), L) +p(Lus D) < 5 + 5+ 5 =<
Therefore, glglir(ll f(z) = L which shows that lim lim fi(z) = lim lim fi(x). o

r—a k—00 k—o0 z—a

whenever 1z € B(a,d) n A\{a}.

[GSERO)

Problem 7. Prove the Dini theorem:

Let K be a compact set, and f; : K — R be continuous for all £ € N such that
{fx}x=1 converges pointwise to a continuous function f : K — R. Suppose that

fr < fry1 for all k€ N. Then {fi}72, converges uniformly to f on K.

Hint: Mimic the proof of showing that {c;};; converges to 0 in Lemma 6.64 in the lecture note.

Proof. Suppose the contrary that there exist € > 0 such that

limsupsup |fy(z) — f(z)| = 2¢.

k—owo zeK

Then there exists 1 < k; < ky < --- such that

max |, (v) = @] = sup |fi, (z) = f(2)| > <.

reK

In other words, for some ¢ > 0 and strictly increasing sequence {k;}72, < N,
Fi={zeK|f(x)— fu,(xr) =2e} #@F VjeN.

Note that since fi, < fry1 forall k e N, F; 2 Fj; for all j € N. Moreover, by the continuity of f; and
f, Fj is a closed subset of K; thus F} is compact. Therefore, the nested set property for compact sets
implies that (.2, Fj is non-empty. In other words, there exists # € K such that f(z) — fi,(z) > ¢
for all j € N which contradicts to the fact that fy — f p.w. on K. =

Problem 8. Let (M,d) and (N, p) be metric spaces, A < M, and fr : A — N be uniformly
continuous functions, and { fi}{_,; converges uniformly to f : A — N on A. Show that f is uniformly

continuous on A.
Proof. Let € > 0 be given. Since {fi};°; converges uniformly to f, there exists N > 0 such that
p(fr(z), f(z)) < % whenever k> N and z € A.
Since fx is uniformly continuous, there exists o > 0 such that
p(fN(xl), fN(xg)) < % whenever x1,79 € A and d(z1,22) < 0.
Therefore, if x1, x5 € A satisfying d(z1,x2) < 0, we have

P(f($1)7 f(%)) < P(f(%% fN(xl)) + p(fN<x1)a fN($2)) + P(fN(@)a f($2))

<€+€+5—5'
3 3 3 7

thus f is uniformly continuous on A. =



Problem 9. Let (M, d) be a metric space, (V,| - |) be a norm space, B< A< M, f: A—V be
bounded for each k € N, and {g,}>, be the Cesaro mean of {fx}{,; that is, g, = % > fr. Show
=1

that if {f}72, converges uniformly to f on B, then {g,}°_, converges uniformly to f on B.
k=1 n=1

Proof. Let € > 0 be given. By the boundedness of f, for each k € N there exists My > 0 such that
H fr(x H M, for all x € B and k € N. Since {fi}72, converges uniformly to f on B, there exists
N7 > 0 such that

ka@)— <§ Vk> N, and x € B.

We note that the inequality above implies that H f (x)H <M= My, +¢ for all x € B.
If x € B, by the fact that

‘ 3

Zl | fu(@) = f(2)] < Zl(Mk-l-M) < w0,

we find that lim — Z Sup,ep || fr(z) — f(z)| = 0; thus there exists N, > 0 such that

n—0w0 1 1
1 & £
- Z | fi(z) — f(2)] < 5 whenever n > Ny and x € B.
Let N = max{Ny, No}. Then if n > N and = € B,
1 n 1 Ny
lgn(z) = f(z)| = ‘ﬁ Z fe(z) = f(2)| < - Z | fu(z) = f(z)| + = Z | fr(z) = f(2)]|
k=1

=
5+ Z

-+ = - <e¢;

2

thus {g,}>_; converges uniformly to f on B. o

8



