Problem 1. Complete the following.

- 1. Suppose that $f_k, f, g : [0, \infty) \to \mathbb{R}$ are functions such that
 - (a) $\forall R > 0, f_k$ and g are Riemann integrable on [0, R];
 - (b) $|f_k(x)| \leq g(x)$ for all $k \in \mathbb{N}$ and $x \in [0, \infty)$;
 - (c) $\forall R > 0, \{f_k\}_{k=1}^{\infty}$ converges to f uniformly on [0, R];

(d)
$$\int_0^\infty g(x)dx \equiv \lim_{R \to \infty} \int_0^R g(x)dx < \infty.$$

Show that $\lim_{k\to\infty}\int_0^\infty f_k(x)dx = \int_0^\infty f(x)dx$; that is,

$$\lim_{k \to \infty} \lim_{R \to \infty} \int_0^R f_k(x) dx = \lim_{R \to \infty} \lim_{k \to \infty} \int_0^R f_k(x) dx.$$

- 2. Let $f_k(x)$ be given by $f_k(x) = \begin{cases} 1 & \text{if } k-1 \leq x < k \\ 0 & \text{otherwise.} \end{cases}$ Find the (pointwise) limit f of the sequence $\{f_k\}_{k=1}^{\infty}$, and check whether $\lim_{k \to \infty} \int_0^{\infty} f_k(x) dx = \int_0^{\infty} f(x) dx$ or not. Briefly explain why one can or cannot apply 1.
- 3. Let $f_k:[0,\infty)\to\mathbb{R}$ be given by $f_k(x)=\frac{x}{1+kx^4}$. Find $\lim_{k\to\infty}\int_0^\infty f_k(x)dx$.
- *Proof.* 1. First we note that since $|f_k(x)| \leq g(x)$ for all $x \in \mathbb{R}$, passing to the limit as $k \to \infty$ shows that $|f(x)| \leq g(x)$ for all $x \in \mathbb{R}$.

Let $\varepsilon > 0$ be given. Since $\lim_{R \to \infty} \int_0^R g(x) dx = \int_0^\infty g(x) dx$ exists, there exists M > 0 such that

$$\int_{R}^{\infty} g(x) dx = \left| \int_{0}^{R} g(x) dx - \int_{0}^{\infty} g(x) dx \right| < \frac{\varepsilon}{3} \qquad \forall R \geqslant M.$$

Since $\{f_k\}_{k=1}^{\infty}$ converges uniformly on [0, M], $\lim_{k \to \infty} \int_0^M f_k(x) dx = \int_0^M f(x) dx$; thus there exists $N \ge 0$ such that

$$\left| \int_0^M f_k(x) \, dx - \int_0^M f(x) \, dx \right| < \frac{\varepsilon}{3} \quad \text{whenever} \quad k \geqslant N.$$

Therefore, if $k \ge N$, we have

$$\left| \int_0^\infty f_k(x) \, dx - \int_0^\infty f(x) \, dx \right|$$

$$\leq \left| \int_0^M f_k(x) \, dx - \int_0^M f(x) \, dx \right| + \int_M^\infty |f(x)| \, dx + \int_M^\infty |f_k(x)| \, dx$$

$$< \frac{\varepsilon}{3} + 2 \int_M^\infty g(x) \, dx < \frac{\varepsilon}{3} + \frac{2\varepsilon}{3} = \varepsilon.$$

thus
$$\lim_{k\to\infty}\int_0^\infty f_k(x)\,dx=\int_0^\infty f(x)\,dx$$
. This implies that

$$\lim_{k \to \infty} \lim_{R \to \infty} \int_0^R f_k(x) dx = \lim_{k \to \infty} \int_0^\infty f_k(x) dx = \int_0^\infty f(x) dx = \lim_{R \to \infty} \int_0^R f(x) dx$$
$$= \lim_{R \to \infty} \lim_{k \to \infty} \int_0^R f_k(x) dx.$$

2. If $x \in [0, \infty)$, we have $x \leq N$ for some $N \in \mathbb{N}$ (by the Archimedean property); thus for $k \geq N$ we have $f_k(x) = 0$. In other words, $\{f_k\}_{k=1}^{\infty}$ converges pointwise to the zero function. Let f be the zero function. Then

$$\int_0^\infty f_k(x) \, dx = \int_{k-1}^k 1 \, dx = 1$$

so that $\lim_{k\to\infty}\int_0^\infty f_k(x)\,dx=1\neq 0=\int_0^\infty f(x)\,dx$. This is because we cannot find an integrable g satisfying that $\left|f_k(x)\right|\leqslant g(x)$ for all $x\in[0,\infty)$. In fact, if $\left|f_k(x)\right|\leqslant g(x)$ for all $x\in[0,\infty)$, then $g(x)\geqslant 1$ for all $x\in[0,\infty)$.

3. Let $g(x) = \frac{x}{1+x^4}$. Then $|f_k(x)| \leq g(x)$ for all $x \in [0,\infty)$ and $k \in \mathbb{N}$. Since $g(x) \leq x$ for $x \in [0,1]$ and $g(x) \leq \frac{1}{x^3}$ for $x \geq 1$, we find that

$$\int_0^\infty g(x) \, dx \le \int_0^1 x \, dx + \int_1^\infty \frac{1}{x^3} \, dx = \frac{1}{2} + \frac{1}{2} = 1 < \infty \, .$$

Moreover,

$$f'_k(x) = \frac{1 + kx^4 - 4kx^4}{(1 + kx^4)^2} = \frac{1 - 3kx^4}{(1 + kx^4)^2}$$

which implies that for each R > 0,

$$\sup_{x \in [0,R]} |f_k(x)| \le |f_k(0)| + |f_k(R)| + \left| \frac{(3k)^{-\frac{1}{4}}}{1 + k \cdot \frac{1}{3k}} \right| = \frac{R}{1 + kR^4} + \frac{3}{4} \left(\frac{1}{3k} \right)^{\frac{1}{4}}.$$

Therefore, the Sandwich Lemma implies that $\lim_{k\to\infty}\sup_{x\in[0,R]}|f_k(x)|=0$ which shows that $\{f_k\}_{k=1}^{\infty}$ converges uniformly to the zero function on [0,R] for every R>0. By 1,

$$\lim_{k \to \infty} \int_0^\infty f_k(x) \, dx = 0 \,.$$

Problem 2. A series is called a **power series about** c or **centered at** c if it is of the form $\sum_{k=0}^{\infty} a_k (x-c)^k \text{ for some sequence } \{a_k\}_{k=0}^{\infty} \subseteq \mathbb{R} \text{ (or } \mathbb{C}) \text{ and } c \in \mathbb{R} \text{ (or } \mathbb{C}).$

- 1. Show that if a power series centered at c is convergent at some point $b \neq c$, then the power series converges pointwise on B(c, |b-c|).
- 2. Suppose that the power series $\sum_{k=0}^{\infty} a_k(x-c)^k$ converges pointwise in B(c,R) for some R>0.

- (a) Suppose that $K \subseteq B(c,R)$ is a compact set. Show that $\sum_{k=0}^{\infty} a_k(x-c)^k$ converges uniformly on K.
- (b) Show that $\sum_{k=0}^{\infty} (k+1)a_{k+1}(x-c)^k$ converges pointwise on B(c,R).
- (c) Show that $\sum_{k=1}^{\infty} \frac{a_{k-1}}{k} (x-c)^k$ converges pointwise on B(c,R).
- Proof. 1. Since the series $\sum_{k=0}^{\infty} a_k (b-c)^k$ converges, $|a_k| |b-c|^k \to 0$ as $k \to \infty$; thus there exists M > 0 such that $|a_k| |b-c|^k \leqslant M$ for all k. $x \in B(c, |b-c|)$, the series $\sum_{k=0}^{\infty} a_k (x-c)^k$ converges absolutely since

$$\sum_{k=0}^{\infty} |a_k(x-c)^k| \le \sum_{k=0}^{\infty} |a_k| |x-c|^k = \sum_{k=0}^{\infty} |a_k| |b-c|^k \frac{|x-c|^k}{|b-c|^k} \le M \sum_{k=0}^{\infty} \left(\frac{|x-c|}{|b-c|}\right)^k$$

which converges (because of the geometric series test or ratio test).

2. (a) Let $K \subseteq B(c, |b-c|)$ be a compact set. Then

$$\operatorname{dist}(K, \partial B(c, |b-c|)) \equiv \inf \{ |x-y| \, \big| \, x \in K, |y-c| = |b-c| \} > 0.$$

Define $r = \frac{|b-c| - \operatorname{dist}(K, \partial B(c, |b-c|))}{|b-c|}$. Then $0 \le r < 1$, and $|x-c| \le r|b-c|$ for all $x \in K$. Therefore, $|a_k(x-c)^k| \le Mr^k$ if $x \in K$; thus the Weierstrass M-test implies that the series $\sum_{k=0}^{\infty} a_k(x-c)^k$ converges uniformly on K.

(b) By (a), it suffices to show that the power series $\sum_{k=0}^{\infty} (k+1)a_{k+1}(x-c)^k$ converges pointwise on B(c,R). Clearly the series converges at x=c. Let $x \in B(c,R)$ and $x \neq c$. Since |x-c| < R, there exists $b \in B(c,R)$ such that

$$|b-c| = \frac{R+|x-c|}{2}.$$

Then if $r = \frac{|x-c|}{|b-c|}$, 0 < r < 1 and

$$\sum_{k=0}^{\infty} (k+1)|a_{k+1}||x-c|^k \leqslant \sum_{k=0}^{\infty} (k+1)|a_{k+1}||b-c|^k \left(\frac{|x-c|}{|b-c|}\right)^k \leqslant M \sum_{k=0}^{\infty} (k+1)r^k$$

for some M > 0. Note that the ratio test implies that the series $\sum_{k=0}^{\infty} (k+1)r^k$ converges if 0 < r < 1; thus $\sum_{k=0}^{\infty} (k+1)|a_{k+1}||x-c|^k$ converges by the comparison test.

(c) By the same setting of (b), if $r = \frac{|x-c|}{|b-c|}$, 0 < r < 1 and

$$\sum_{k=1}^{\infty} \frac{|a_{k-1}|}{k} |x-c|^k \leqslant \sum_{k=0}^{\infty} \frac{|a_{k-1}|}{k} |b-c|^k \Big(\frac{|x-c|}{|b-c|}\Big)^k \leqslant M \sum_{k=0}^{\infty} \frac{1}{k} r^k$$

for some M>0. Note that the ratio test implies that the series $\sum_{k=0}^{\infty} \frac{1}{k} r^k$ converges if 0 < r < 1; thus $\sum_{k=0}^{\infty} \frac{a_{k-1}}{k} |x-c|^k$ converges by the comparison test.

Remark: From the problem above, we have the following:

- 1. Part 1 implies that the interior of the collection of all x at which the power series converges is either an open ball or empty. The radius of such a ball is called the **radius of convergence**.
- 2. Part 2(a) and 2(b) imply that $\frac{d}{dx} \sum_{k=0}^{\infty} a_k (x-c)^k = \sum_{k=0}^{\infty} \frac{d}{dx} a_k (x-c)^k$ for all $x \in B(c,R)$ if $\sum_{k=0}^{\infty} a_k (x-c)^k$ converges pointwise in B(c,R).
- 3. Part 2(a), 2(b) and 2(c) imply that $\frac{d}{dx} \sum_{k=1}^{\infty} \frac{a_{k-1}}{k} (x-c)^k = \sum_{k=0}^{\infty} a_k (x-c)^k$ for all $x \in B(c,R)$ if $\sum_{k=0}^{\infty} a_k (x-c)^k$ converges pointwise in B(c,R).

Problem 3. In this problem we investigate the differentiability of a power series in a different way.

Let $\{a_k\}_{k=0}^{\infty}$ be a sequence in \mathbb{R} or \mathbb{C} , and $f(x) = \sum_{k=0}^{\infty} a_k x^k$ be a power series with radius of convergence R > 0. Let $s_n(x) = \sum_{k=0}^n a_k x^k$ be the *n*-th partial sum, $R_n(x) = f(x) - s_n(x)$, and $g(x) = \sum_{k=1}^{\infty} k a_k x^{k-1}$. For $x, x_0 \in B[0, \rho] \subsetneq B(0, R)$, where $x \neq x_0$, write

$$\frac{f(x) - f(x_0)}{x - x_0} - g(x) = \frac{s_n(x) - s_n(x_0)}{x - x_0} - s'_n(x_0) + \left(s'_n(x_0) - g(x_0)\right) + \frac{R_n(x) - R_n(x_0)}{x - x_0}.$$
 (0.1)

Show that

$$\left| \frac{R_n(x) - R_n(x_0)}{x - x_0} \right| \le \sum_{k=n+1}^{\infty} k |a_k| \rho^{k-1},$$

and use the inequality above to show that $\lim_{x\to x_0} \frac{f(x)-f(x_0)}{x-x_0} = g(x_0)$.

Proof. Let R be the radius of convergence of the power series $\sum_{k=0}^{\infty} a_k x^k$.

Claim: The series $\sum_{k=1}^{\infty} k|a_k|\rho^{k-1}$ converges for all $0 < \rho < R$.

To see the claim, we note that for each 0 < r < R, $\sum_{k=0}^{\infty} a_k r^k$ converges; thus $\lim_{k \to \infty} a_k r^k = 0$. This implies that the sequence $\{a_k r^k\}_{k=1}^{\infty}$ is bounded for all 0 < r < R. Let M(r) denote a real number satisfying $|a_k r^k| \le M(r)$ for all $k \in \mathbb{N} \cup \{0\}$. Then for $0 < \rho < R$, we choose r so that $0 < \rho < r < R$ so that

$$\sum_{k=1}^{\infty} k |a_k| \rho^{k-1} = \sum_{k=1}^{\infty} k |a_k| r^{k-1} \left(\frac{\rho}{r}\right)^{k-1} \le M(r) \sum_{k=1}^{\infty} k \left(\frac{\rho}{r}\right)^{k-1}$$

where the convergence of the series on the right-hand side can be obtained by the ratio test. The claim is then established by the comparison test.

Since $R_n(x) = \sum_{k=n+1}^{\infty} a_k x^k$ converges for all $x \in (-R, R)$, for $x \neq x_0$ we have

$$\frac{R_n(x) - R_n(x_0)}{x - x_0} = \frac{1}{x - x_0} \sum_{k=n+1}^{\infty} a_k (x^k - x_0^k)$$
$$= \sum_{k=n+1}^{\infty} a_k (x^{k-1} + x^{k-2}x_0 + \dots + xx_0^{k-2} + x_0^{k-1});$$

thus if $x, x_0 \in [-\rho, \rho] \subseteq (-R, R)$ and $x \neq x_0$,

$$\left| \frac{R_n(x) - R_n(x_0)}{x - x_0} \right| \le \sum_{k=n+1}^{\infty} |a_k| \left(|x|^{k-1} + |x|^{k-2} |x_0| + \dots + |x| |x_0|^{k-2} + |x_0|^{k-1} \right)$$

$$\le \sum_{k=n+1}^{\infty} k |a_k| \rho^{k-1}.$$

Let $\varepsilon > 0$ be given. By the claim above there exists N > 0 such that if $n \ge N$,

$$\sum_{k=n+1}^{\infty} k|a_k||x_0|^{k-1} < \frac{\varepsilon}{3} \quad \text{and} \quad \sum_{k=n+1}^{\infty} k|a_k|\rho^{k-1} < \frac{\varepsilon}{3}.$$

Therefore, (0.1) implies that

$$\left| \frac{f(x) - f(x_0)}{x - x_0} - g(x_0) \right| \\
\leqslant \left| \frac{s_n(x) - s_n(x_0)}{x - x_0} - s'_n(x_0) \right| + \left| s'_n(x_0) - g(x_0) \right| + \left| \frac{R_n(x) - R_n(x_0)}{x - x_0} \right| \\
\leqslant \left| \frac{s_n(x) - s_n(x_0)}{x - x_0} - s'_n(x_0) \right| + \left| \sum_{k=n+1}^{\infty} k a_k x_0^{k-1} \right| + \sum_{k=n+1}^{\infty} k |a_k| \rho^{k-1} \\
\leqslant \left| \frac{s_n(x) - s_n(x_0)}{x - x_0} - s'_n(x_0) \right| + \frac{2\varepsilon}{3};$$

thus

$$\limsup_{x \to x_0} \left| \frac{f(x) - f(x_0)}{x - x_0} - g(x_0) \right| \leq \limsup_{x \to x_0} \left| \frac{s_n(x) - s_n(x_0)}{x - x_0} - s'_n(x_0) \right| + \frac{2\varepsilon}{3}$$

$$= \lim_{x \to x_0} \left| \frac{s_n(x) - s_n(x_0)}{x - x_0} - s'_n(x_0) \right| + \frac{2\varepsilon}{3} < \varepsilon.$$

Since $\varepsilon > 0$ is given arbitrarily, we find that $\lim_{x \to x_0} \left| \frac{f(x) - f(x_0)}{x - x_0} - g(x_0) \right| = 0$ which shows that

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = g(x_0).$$

Problem 4. Suppose that the series $\sum_{n=0}^{\infty} a_n = 0$, and $f(x) = \sum_{n=0}^{\infty} a_n x^n$ for $-1 < x \le 1$. Show that f is continuous at x = 1 by complete the following.

1. Write
$$s_n = a_0 + a_1 + \dots + a_n$$
 and $S_n(x) = a_0 + a_1 x + \dots + a_n x^n$. Show that

$$S_n(x) = (1-x)(s_0 + s_1x + \dots + s_{n-1}x^{n-1}) + s_nx^n$$

and
$$f(x) = (1 - x) \sum_{n=0}^{\infty} s_n x^n$$
.

- 2. Using the representation of f from above to conclude that $\lim_{x\to 1^-} f(x) = 0$.
- 3. What if $\sum_{n=0}^{\infty} a_n$ is convergent but not zero?

Proof. 1. Let $s_n = a_0 + a_1 + \dots + a_n$ and $S_n(x) = a_0 + a_1 x + \dots + a_n x^n$.

$$S_n(x) = \sum_{k=0}^n a_k x^k = a_0 + \sum_{k=1}^n a_k x^k = s_0 + \sum_{k=1}^n (s_k - s_{k-1}) x^k$$

$$= s_0 + \sum_{k=1}^n s_k x^k - \sum_{k=1}^n s_{k-1} x^k = \sum_{k=0}^n s_k x^k - \sum_{k=0}^{n-1} s_k x^{k+1}$$

$$= s_n x^n + \sum_{k=0}^{n-1} s_k x^k - x \sum_{k=0}^{n-1} s_k x^k$$

$$= (1-x)(s_0 + s_1 x + \dots + s_{n-1} x^{n-1}) + s_n x^n.$$

Therefore, by the fact that $\lim_{n\to\infty} s_n = 0$, we find that if $x \in (-1,1]$,

$$f(x) = \lim_{n \to \infty} S_n(x) = (1 - x) \sum_{k=0}^{\infty} s_k x^k$$
.

2. Let $\varepsilon > 0$ be given. Since $\lim_{n \to \infty} s_n = 0$, there exists N > 0 such that $|s_n| < \frac{\varepsilon}{2}$ for all $n \ge N$. Choose $0 < \delta < 1$ such that $\delta \sum_{k=0}^{N-1} |s_k| < \frac{\varepsilon}{2}$. Then if $1 - \delta < x < 1$,

$$|f(x)| \leq |1 - x| \sum_{k=0}^{N-1} |s_k| |x|^k + |1 - x| \sum_{k=N}^{\infty} |s_k| |x|^k$$

$$\leq \delta \sum_{k=0}^{N-1} |s_k| + \frac{\varepsilon}{2} |1 - x| |x|^N \sum_{k=0}^{\infty} |x|^k < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} |1 - x| \frac{1}{1 - |x|} = \varepsilon.$$

Therefore, $\lim_{x\to 1^-} f(x) = 0 = f(1)$ which shows that f is continuous at 1.

3. If $s = \sum_{k=0}^{\infty} a_k \neq 0$, we define a new series $\sum_{n=0}^{\infty} b_n x^n$ by $b_0 = a_0 - s$ and $b_n = a_n$ for all $n \in \mathbb{N}$. Then $g(x) = \sum_{n=0}^{\infty} b_n x^n$ also converges for $x \in (-1,1]$ and satisfies that g(1) = 0. Therefore, 1 and 2 imply that g is continuous at 1; thus $\lim_{x \to 1^-} g(x) = 0$. By the fact that g(x) = f(x) - s, we conclude that

$$\lim_{x \to 1^{-}} f(x) = s = \sum_{n=0}^{\infty} a_n = f(1).$$

Problem 5. Show that the series

$$\sum_{k=1}^{\infty} (-1)^k \frac{x^2 + k}{k^2}$$

converges uniformly on every bounded interval.

Proof. Since $\sum_{k=1}^{\infty} (-1)^k \frac{1}{k} = -\ln 2$ converges (by the Dirichlet test), we have

$$\sum_{k=1}^{\infty} (-1)^k \frac{x^2 + k}{k^2} = \sum_{k=1}^{\infty} (-1)^k \frac{x^2}{k^2} - \ln 2 \qquad \forall x \in \mathbb{R}.$$

Let $M_k = \frac{R^2}{k^2}$. Then

- 1. $\sup_{x \in [-R,R]} \left| (-1)^k \frac{x^2}{k^2} \right| \le M_k \text{ for all } k \in \mathbb{N}.$
- 2. $\sum_{k=1}^{\infty} M_k < \infty$ (by the integral test).

Therefore, the Weierstrass M-test implies that $\sum_{k=1}^{\infty} (-1)^k \frac{x^2}{k^2}$ converges uniformly on [-R, R].

Problem 6. Consider the function

$$f(x) = \sum_{k=1}^{\infty} \frac{1}{1 + k^2 x} \,.$$

On what intervals does it converge uniformly? On what intervals does it fail to converge uniformly? Is f continuous wherever the series converges? If f bounded?

Problem 7. Determine which of the following real series $\sum_{k=1}^{\infty} g_k$ converge (pointwise or uniformly). Check the continuity of the limit in each case.

1.
$$g_k(x) = \begin{cases} 0 & \text{if } x \leq k, \\ (-1)^k & \text{if } x > k. \end{cases}$$

2.
$$g_k(x) = \begin{cases} \frac{1}{k^2} & \text{if } |x| \leq k, \\ \frac{1}{x^2} & \text{if } |x| > k. \end{cases}$$

3.
$$g_k(x) = \frac{(-1)^k}{\sqrt{k}} \cos(kx)$$
 on \mathbb{R} .

Proof. 1. By the definition of g_k , we find that the partial sum $S_n(x) = \sum_{k=1}^n g_k(x)$ satisfies that for all $n \in \mathbb{N}$,

$$S_{2n}(x) = \begin{cases} -1 & \text{if } x \in (1,2] \cup (3,4] \cup \dots \cup (2n-1,2n], \\ 0 & \text{otherwise,} \end{cases}$$

and

$$S_{2n-1}(x) = \begin{cases} -1 & \text{if } x \in (1,2] \cup (3,4] \cup \dots \cup (2n-3,2n-2] \cup (2n-1,\infty), \\ 0 & \text{otherwise.} \end{cases}$$

Therefore, $\{S_n\}_{n=1}^{\infty}$ converges pointwise to the function

$$S(x) = \begin{cases} -1 & \text{if } x \in (1,2] \cup (3,4] \cup \dots \cup (2n-3,2n-2] \cup \cdot, \\ 0 & \text{otherwise} \end{cases}$$

or more precisely,

$$S(x) = \sum_{k=1}^{\infty} \mathbf{1}_{(2k-1,2k]}(x)$$
.

The convergence is uniformly on any bounded subset of \mathbb{R} , and the limit function S has discontinuities on \mathbb{N} .

- 2. Let $M_k = \frac{1}{k^2}$. Then $\sup_{x \in \mathbb{R}} |g_k(x)| \leq M_k$ and $\sum_{k=1}^{\infty} M_k$ converges (by the integral test). Therefore, the Weierstrass M-test implies that $\sum_{k=1}^{\infty} g_k$ converges uniformly on \mathbb{R} .
- 3. If $x = (2n+1)\pi$ for some $n \in \mathbb{Z}$, then $\cos(kx) = (-1)^k$ for all $k \in \mathbb{N}$; thus $\sum_{k=1}^{\infty} g_k(x)$ diverges at $x = (2n+1)\pi$ (by the integral test).

Now suppose that $x \notin \{(2n+1)\pi \mid n \in \mathbb{Z}\}$. Let $S_n(x) = \sum_{k=1}^n (-1)^k \cos(kx)$. Then $S_n(x) = \sum_{k=1}^n \cos(k(x+\pi))$ and

$$2\sin\frac{x+\pi}{2}S_n(x) = \sum_{k=1}^n \left[\sin\left(k + \frac{1}{2}\right)(x+\pi) - \sin\left(k - \frac{1}{2}\right)(x+\pi) \right]$$
$$= \sin\left(n + \frac{1}{2}\right)(x+\pi) - \sin\frac{x+\pi}{2};$$

thus

$$S_n(x) = \frac{(-1)^n \cos(n + \frac{1}{2})x}{2 \cos \frac{x}{2}} - \frac{1}{2} \quad \forall x \in \mathbb{R} \setminus \{(2n+1)\pi \mid n \in \mathbb{Z}\}.$$

The equality above shows that

$$|S_n(x)| \le \frac{1}{2|\cos\frac{x}{2}|} + \frac{1}{2} \qquad \forall x \in \mathbb{R} \setminus \{(2n+1)\pi \mid n \in \mathbb{Z}\},$$

which is bounded independent of n. The Dirichlet test then shows that $\sum_{k=1}^{\infty} g_k(x)$ converges for all $x \in \mathbb{R} \setminus \{(2n+1)\pi \mid n \in \mathbb{Z}\}$. Therefore, $\sum_{k=1}^{\infty} g_k$ converges pointwise on $\mathbb{R} \setminus \{(2n+1)\pi \mid n \in \mathbb{Z}\}$. Let $A \subseteq \mathbb{R}$ be a set satisfying that

$$d(x, \{(2n+1)\pi \mid n \in \mathbb{Z}\}) = \inf\{|x-y| \mid y \in \{(2n+1)\pi \mid n \in \mathbb{Z}\}\} \geqslant \delta \qquad \forall x \in A.$$

Then the computation above shows that $|S_n(x)| \leq R \equiv \frac{1}{2|\cos\frac{\delta}{2}|} + \frac{1}{2}$ for all $x \in A$. If n > m,

we have

$$\sum_{k=m+1}^{n} \frac{(-1)^k}{\sqrt{k}} \cos(kx) = \sum_{k=m+1}^{n} \frac{1}{\sqrt{k}} \left[S_k(x) - S_{k-1}(x) \right]$$

$$= \sum_{k=m+1}^{n} \frac{1}{\sqrt{k}} S_k(x) - \sum_{k=m+1}^{n} \frac{1}{\sqrt{k}} S_{k-1}(x)$$

$$= \sum_{k=m+1}^{n} \frac{1}{\sqrt{k}} S_k(x) - \sum_{k=m}^{n-1} \frac{1}{\sqrt{k+1}} S_k(x)$$

$$= \frac{1}{\sqrt{n}} S_n(x) - \frac{1}{\sqrt{m+1}} S_m(x) + \sum_{k=m+1}^{n-1} \left(\frac{1}{\sqrt{k}} - \frac{1}{\sqrt{k+1}} \right) S_k(x);$$

thus if $x \in A$,

$$\Big| \sum_{k=m+1}^{n} \frac{(-1)^k}{\sqrt{k}} \cos(kx) \Big| \le \Big[\frac{1}{\sqrt{n}} + \frac{1}{\sqrt{m+1}} + \sum_{k=m+1}^{n-1} \Big(\frac{1}{\sqrt{k}} - \frac{1}{\sqrt{k+1}} \Big) \Big] R = \frac{2R}{\sqrt{m+1}}.$$

Therefore, for a given $\varepsilon > 0$, by choosing N > 0 satisfying $\frac{2R}{\sqrt{N+1}} < \varepsilon$ we conclude that

$$\Big| \sum_{k=m+1}^{n} \frac{(-1)^k}{\sqrt{k}} \cos(kx) \Big| < \varepsilon \quad \text{whenever } n > m \geqslant N \text{ and } x \in A.$$

By the Cauchy criterion, $\sum_{k=1}^{\infty} g_k$ converges uniformly on A; thus $\sum_{k=1}^{\infty} g_k$ is continuous at every point at which the series converges.