Exercise Problem Sets 5
Mar. 17. 2023

Problem 1. Complete the following.
1. Suppose that fi, f, g : [0,00) — R are functions such that
(a) VR >0, fr and g are Riemann integrable on [0, R];
(b) |fr(x)| < g(x) for all ke N and z € [0, 0);
(c
R
(d J g(@)dz = 1im | g(z)dz < o,

R—0 0

VR >0, {fi}, converges to f uniformly on [0, R];

)
)
)
)

0¢] o0
Show that klim Je(x)de = J f(z)dz; that is,
—00 0

R
lim limf fr(x)dr = lim hmf fr(x)dx

k—o0 R—o0 R—00 k—00 0

1 ifk—1<z<k,
2. Let fi(x) be given by fi(z) = { 1 !

Find the (pointwise) limit f of the
0 otherwise.

Q0 0
sequence {fr}7;, and check whether klim j fr(x)de = J f(z)dz or not. Briefly explain why
—® Jo 0

one can or cannot apply 1

3. Let fr :[0,00) — R be given by fi(z) = Find hm fk( Ydx
0

1+ k 1+ kat’
Proof. 1. First we note that since |fi(z)| < g(x) for all z € R, passing to the limit as k — oo shows
that | f(z)| < g(x) for all z € R.

R 0
Let € > 0 be given. Since élm g(x)dr = J g(x) dx exists, there exists M > 0 such that
—00 0

f x—” dx—f (x)dm‘<§ YR> M.

M M
Since {fi}72, converges uniformly on [0, M], klim fr(z)dx = f f(z) dx; thus there exists
—® Jo 0
N = 0 such that

‘J;)M fi(z) dx — LM f(x) dm‘ < g whenever k> N.

Therefore, if K > N, we have

UOOO fk(x)dx—foo f(x)dx
U fulz dx—f flo dx)+J \dx+foo|fk(a:)|dx

2 d —_ =
<3+ JM ()x<3+3



Q0 Q0
thus lim f fr(x)dx = f f(x)dz. This implies that
0

k—o0 0
R

R o o0
lim lim J fk(x)dx:klgrolojo fr(x) de :Jo f(z)dx = }%1_1[20 ) f(z)dx

k—o0 R—o0 0

= lim lim JR fr(x)dx

R—00 k—o0 0

2. If x € [0,00), we have x < N for some N € N (by the Archimedean property); thus for k > N

we have fy(z) = 0. In other words, {f;}5, converges pointwise to the zero function. Let f be

LOO fr(z)dx = f:_l ldx =1

Q0 o0
so that klim f fr(x)de =1+#0= J f(z)dz. This is because we cannot find an integrable
—x Jo 0

the zero function. Then

g satisfying that ‘fk(:v)‘ < g(x) for all z € [0,00). In fact, if ‘fk(:);)‘ < g(z) for all z € [0, 0),
then g(x) > 1 for all x € [0, ).

3. Let g(z) = 1—fx4' Then |fi(z)| < g(z) for all z € [0,00) and k € N. Since g(z) < = for
xe[0,1] and g(z) < & for x = 1, we find that
* ! “ 1 11
Jo g(x)dxéfo:cdx—l—fl de:§+§:1<oo.
Moreover,

(@) = 1+ kat 4km4_ 1 — 3ka*
F (1+kzv)2 (14 kat)?
which implies that for each R > 0,

1

(k)" R 3/ 1\1
Sup W@ < O+ AR+ 175 = 1 T 1
Therefore, the Sandwich Lemma implies that lim sup ‘ fr(x ‘ = 0 which shows that {fi};>,

k—c0 zel0,R)
converges uniformly to the zero function on [0, R] for every R > 0. By 1,

0

Problem 2. A series is called a power series about c or centered at c if it is of the form
e}

> ag(z — ¢)* for some sequence {a;}?, € R (or C) and c€ R (or C).

k=0

1. Show that if a power series centered at ¢ is convergent at some point b # ¢, then the power

series converges pointwise on B(c, |b — ¢l).

a0
2. Suppose that the power series . ax(x — ¢)* converges pointwise in B(c, R) for some R > 0.
k=0



Q0
(a) Suppose that K < B(c, R) is a compact set. Show that > ax(z —c)¥ converges uniformly
k=0
on K.

Q0
(b) Show that > (k + 1)ag.1(z — ¢)* converges pointwise on B(c, R).
k=0

a0
(c) Show that ] %(m — ¢)¥ converges pointwise on B(c, R).
k=1

Proof. 1. Since the series Y. a(b — ¢)* converges, |a||b — ¢/* — 0 as k — oo; thus there exists
k=0

o0
M > 0 such that |ag||b—c|f < M for all k. z € B(c, |b—cl|), the series ] ax(x — c)* converges
absolutely since k=0
3 k k| ¢ |z — c|\*
X oxle =] < Y bmle = = Yl = < 3 3 (=2

which converges (because of the geometric series test or ratio test).

2. (a) Let K < B(c, |b— ¢|) be a compact set. Then
dist(K,0B(c,|b—c|)) =inf{|z —y| |z € K, |y —c| = [b—c|} > 0.

|b — | — dist(K,dB(c, |b—cl))
b=

x € K. Therefore, |ay(z — ¢)¥| < Mr* if x € K; thus the Weierstrass M-test implies that
o0

Define r = . Then 0 < r < 1, and |z — ¢| < r|b — ¢| for all

the series Y. ay(z — ¢)* converges uniformly on K.
k=0

0

(b) By (a), it suffices to show that the power series Y. (k+1)ag,1(z —c)* converges pointwise
k=0

on B(e,R). Clearly the series converges at © = ¢. Let x € B(¢,R) and z # ¢. Since

|z — ¢| < R, there exists b € B(c, R) such that

R —
|b_c\:M,
2
Thenifr—'$ |0<r<1and
b—c|’
S < k(1T —c[\F S k
2k Dlowiallo = ef* < 30+ Diawsally— el (=) < M b+ 1
k=0 k=0 k=0

Q0
for some M > 0. Note that the ratio test implies that the series Y. (k + 1)r* converges if

k=0
w
0 <r < 1;thus Y (k+1)|ags1]|lz — c|* converges by the comparison test.
k=0
(c) By the same setting of (b), if r = m, 0<r<1and
1l Sy () S L
Z k ’x - C‘ == Z L ‘ - C’ | C Z

k=1 k=0

for some M > 0. Note that the ratio test implies that the series Z r converges if

e¢]
0 <r <1;thus ), ak};l |z — c|¥ converges by the comparison test. o
k=0



Remark: From the problem above, we have the following:

1. Part 1 implies that the interior of the collection of all x at which the power series converges is

either an open ball or empty. The radius of such a ball is called the radius of convergence.

o0 o0
2. Part 2(a) and 2(b) imply that a MNag(z —o)f = Y] iak(yc —¢)* for all x € B(c,R) if
dr ;= k=0 dv
Q0
> ag(x — ¢)* converges pointwise in B(c, R).

iy

0

e 0] 0
3. Part 2(a), 2(b) and 2(c) imply that % > akk_l(:c —c)* = > ap(x — )k for all x € B(c, R) if
k=1 k=0

k

18

ag(z — ¢)" converges pointwise in B(c, R).

k=0

Problem 3. In this problem we investigate the differentiability of a power series in a different way.

o0
Let {ar}2, be a sequence in R or C, and f(z) = Y arz® be a power series with radius of
k=0
convergence R > 0. Let s,(z) = Y azz® be the n-th partial sum, R,(z) = f(z) — s,(z), and
k=0
o0
g(z) = > kapz*~t. For z,x9 € B0, p] < B(0, R), where = # x¢, write
k=1
f (@) — f(xo) sn(®) — sn(20) : Ry () = Ru(o)
—— — pu— h— — . 0.1
) () = ) ) (s ) = ga) + 01)
Show that .
R,(x) — R, (x _
=R ¢ g,
L =Zo k=n-+1
and use the inequality above to show that lim ‘W = g(zo).
T—x0 — X
0
Proof. Let R be the radius of convergence of the power series > apz*.
k=0
a0
Claim: The series Y. k|ag|p*~! converges for all 0 < p < R.
k=1
Q0
To see the claim, we note that for each 0 < r < R, Y apr* converges; thus klim apr® = 0. This
k=0 =

implies that the sequence {a;r*}?_, is bounded for all 0 < r < R. Let M(r) denote a real number

satisfying |axr*| < M(r) for all k € NuU {0}. Then for 0 < p < R, we choose r so that 0 < p <7 < R

so that
o o0 P\ k-1 wO P\ k-1
Z klag| "t = Z klag|r* (—) < M(r) Z k;(—)
k=1 k=1 r = "

where the convergence of the series on the right-hand side can be obtained by the ratio test. The

claim is then established by the comparison test.



0
Since R,(z) = > apx® converges for all z € (—R, R), for x # 17 we have
k=n+1
o0
T — Zo T — X ft 1 0
o0
= Z Qg (l“k_l + 2" 2y 4 4 x:lclg_Q + mg_l) :
k=n+1

thus if z, xg € [—p, p] S (=R, R) and = # z,

R,.(x) — R, (x = _ _ _
\ @) = Buleo)| o S gy (e + [ 2lo] + - + [zl + [zof*)
T = Zo k=n-+1
6]
< Z Elag|p" .
k=n-+1

Let € > 0 be given. By the claim above there exists N > 0 such that if n > N,

- € > 3
Z klag||zo)* ™ < 3 and Z Elag| "t < 3
k=n+1 k=n+1

Therefore, (@) implies that

x) — f(x
‘f< ) f( 0) _’g($0)
r — 2o
Sp(T) — splx R, (x) — R, (x
< [Pl ) o) = o) + | D)
r — 2o r — 2o
sn () — 8n(20) ' - k—1 < k—1
< — s (xo)| + Z kayry | + Z klak|p
L= To k=n+1 k=n+1
< $n (%) — sn(20) — s/ (20) %;
T — T 3
thus
_ s, 9
lim sup f(x) = J(zo) g(zo)| < limsup sn(@) = sn(20) — s, (o) +=
Tz T — X T—z0 T — X 3
n — 9n 2
~ Jim |28 = (@) )‘+—8<g
T—x0 T — X 3

M _ g(iﬁo)’ = 0 which shows that

Since € > 0 is given arbitrarily, we find that lim

T—x0 Tr — X0
lim L&) = /@) oy ;

T—Io r — 2o

0 0
Problem 4. Suppose that the series >; a, = 0, and f(z) = ) ap2” for —1 <z < 1. Show that f

n=0 n=0

is continuous at x = 1 by complete the following.



1. Write s, = ag + a1 + -+ a, and S,,(x) = ap + a1z + - - - + a,x™. Show that

Sp(z) = (1—z)(s0+ 812+ + 812" ) + 5,2"
and f(z) = (1 —x) > s,az™.
n=0

2. Using the representation of f from above to conclude that lim f(z) = 0.

r—1—

o0
3. What if )] a, is convergent but not zero?

n=0

Proof. 1. Let s, =ap+ a1+ -+ a, and S,(x) = ag + a1z + - - + a,a™.
n n n
Sp(z) = Z apx® = ag + 2 apx® = so + Z(Sk — sp_1)z”
k=0 k=1 k=1
n n n n—1
=50+ Z sprt — Z sp_1ak = Z szt — Z sprFtt
k=1 k=1 k=0 k=0

n—1 n—1
= s,z" + 2 sprk — x Z spz”
k=0 k=0
=1 —2)(so+ 17+ +8,02" ") + 52"
Therefore, by the fact that lim s, = 0, we find that if z € (-1, 1],
n—0o0
ee}

f(z) = lim S,(z) = (1 — ) Z spa” .

n—o0
k=0

2. Let € > 0 be given. Since lim s, = 0, there exists N > 0 such that |s,| < g for all n > N.

n—0o0

N-1
Choose 0 < § < 1 such that § ] |si| < g Thenif1 -0 <z <1,
k=0

N-1 0
[f@)] < IL=z| Y Isullal® + 1 =] Y |sill["
k=0 k=N

N-1 0
€ g € 1
<0 lsel + 51 —alla¥ 3 Jal* < 3Tl el =
k=0 k=0

Therefore, lim f(z) =0 = f(1) which shows that f is continuous at 1.

rx—1-

0 o0
3. If s = > ar # 0, we define a new series Y, b,z" by by = ag — s and b, = a,, for all n € N.

k=0 n=0
o0
Then g(z) = )] bya™ also converges for x € (—1,1] and satisfies that g(1) = 0. Therefore, 1
n=0
and 2 imply that g is continuous at 1; thus lim g(z) = 0. By the fact that g(z) = f(z) — s,

rz—1-

we conclude that

r—1—

lim f(x):s:Zan:f(l). o



Problem 5. Show that the series

09]

22+ k
—1)k

converges uniformly on every bounded interval.

Q0
Proof. Since )| (—1)’“‘% = —1In2 converges (by the Dirichlet test), we have
k=1

) 2 )
SIS D S vaeR

k=1 K k=1 k*
R2
Let M, = oE Then
72
1. sup ’(—1)]“—2‘ < My, for all ke N.
ve[—R,R) k
a0
2. >, My < o (by the integral test).
k=1
0 x2
Therefore, the Weierstrass M-test implies that Y (—1)*> converges uniformly on [-R, R]. o

k=1 k?

Problem 6. Consider the function

= 1
flz) = -
v kZ::ll—i-k:a:

On what intervals does it converge uniformly? On what intervals does it fail to converge uniformly?

Is f continuous wherever the series converges? If f bounded?

Qo0
Problem 7. Determine which of the following real series ). gi converge (pointwise or uniformly).
k=1
Check the continuity of the limit in each case.
0 ife <k,
L g(@) = { (—1)% ifa>k.
% if |z| < k,
— if 2] > k.
x
3. gr(x) = (=D cos(kx) on R.
Vk
Proof. 1. By the definition of g, we find that the partial sum S, (z) = > gx(x) satisfies that for all
k=1
neN,
-1 ifze(l,2u (3,4 u---u(2n—1,2n],
Son(2) = { 0 otherwise,
and

Sgn_l (ZL‘) =

0 otherwise.

{ -1 ifze(1,2]u(3,4u---u(2n—3,2n—2] U (2n — 1,00),



Therefore, {S,}°_, converges pointwise to the function

-1 ifze(,2lu(3,4u--u(2rn—3,2n—-2] U
S(z) = { 0 otherwise

or more precisely,

a0
Z (2k— 12k:

The convergence is uniformly on any bounded subset of R, and the limit function S has dis-

continuities on N.

1 o0
. Let M), = = Then sup |gi(z)| < My and > M converges (by the integral test). Therefore,
zeR k=1
a0
the Weierstrass M-test implies that >, g, converges uniformly on R.
k=1

a0
. If x = (2n + 1) for some n € Z, then cos(kx) = (—1)* for all k € N; thus >_ gp(z) diverges at
k=1
= (2n + 1)7 (by the integral test).

n

Now suppose that = ¢ {(2n + 1)w|n € Z}. Let S,(x) = > (=1)kcos(kz). Then S,(z) =

k=1
> cos(k(xz + m)) and
k=1
. ;v—|—7r N . 1
2sin Z [sm k—I— x+7r)—sm(/f—§)(m+7r)}
1 T+m
:sln(n+§)(x+7r)—sm 5
thus 1) ( 1
—1)"cos(n+3)xr 1
Sn(z) = Dcos 2 b Vee R\{(2n+ 1)r|neZ}.

The equality above shows that

1

2| cos 3|

|Sy ()] < VeeR\{(2n+ )1 |neZ},

e @]
which is bounded independent of n. The Dirichlet test then shows that > gx(z) converges for

o0
all x € R\{(2n + 1)7 |n € Z}. Therefore, >, gy converges pointwise on R\{(2n + 1)x |n € Z}.
k=1

Let A € R be a set satisfying that
d(z,{2n+)r|neZ}) =inf{lr—y||lye{2n+)n|neZ}} >6 VzecA.

Then the computation above shows that |S,(z)| < R = oosd] + % for all z € A. If n > m,
COS 5



we have

k=m+1 k k=m+1 k
n 1 n—1 1
= > —=S(z) - Sk(z)
k=m+1 k k=m k + 1
1 1 (| 1
=—5, — S —_—— S :
TR (mHk:;H vk k+1> .

thus if z € A,

‘ Z (:/%) cos(kx)‘é[\/iﬁ—i-\/mli“—i—k:;jq(\/i%— kl 1)]R: 7721}11

k=m+1

_|_

Therefore, for a given € > 0, by choosing N > 0 satisfying < ¢ we conclude that

2R
VN +1

n _1k
’ Z ( )cos(k:x)‘<5 whenever n >m > N and z € A.

k=m+1 \/E

a0 o0

By the Cauchy criterion, Y] g converges uniformly on A; thus > g is continuous at
k=1 k=1

every point at which the series converges.



