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Problem 1. Let δ : (C ([´1, 1];R), } ¨ }8) Ñ R be defined by δ(f) = f(0). Show that δ is linear and
uniformly continuous.

Proof. Let c P R and f, g P C ([´1, 1];R). Then

δ(cf + g) = cf(0) + g(0) = cδ(f) + δ(g)

which shows that δ is linear on C ([´1, 1];R).
For the uniform continuity of δ, let ε ą 0 be given. Choose δ = ε. Then if }f ´ g}8 ă δ, we have

ˇ

ˇf(0) ´ g(0)
ˇ

ˇ ď }f ´ g}8 ă δ = ε

which implies that δ is uniformly continuous. ˝

Problem 2. Let (M,d) be a metric space, and K Ď M be a compact subset.

1. Show that the set U =
␣

f P C (K;R)
ˇ

ˇ a ă f(x) ă b for all x P K
(

is open in
(
C (K;R), } ¨ }8

)
for all a, b P R.

2. Show that the set F =
␣

f P C (K;R)
ˇ

ˇ a ď f(x) ď b for all x P K
(

is closed in
(
C (K;R), } ¨ }8

)
for all a, b P R.

3. Let A Ď M be a subset, not necessarily compact. Prove or disprove that the set B =
␣

f P

Cb(A;R)
ˇ

ˇ f(x) ą 0 for all x P A
(

is open in
(
Cb(A;R), } ¨ }8

)
.

Proof. 1. Let g P U . By the Extreme Value Theorem (Corollary ??), there exists x0, x1 P K such
that

g(x0) = inf
xPK

g(x) and g(x1) = sup
xPK

g(x) .

Therefore, a ă inf
xPK

g(x) ď sup
xPK

g(x) ă b. Let r = min
␣

b ´ sup
xPK

g(x), inf
xPK

g(x) ´ a
(

. Then r ą 0.
Moreover, if f P B(g, r) and x P K, we have

|f(x) ´ g(x)| ď sup
xPK

ˇ

ˇf(x) ´ g(x)
ˇ

ˇ = }f ´ g}8 ă r .

Therefore, if f P B(g, r), by the fact that r ď b ´ sup
xPK

g(x) and r ď inf
xPK

g(x) ´ a, we conclude
that if x P K,

a ď inf
xPK

g(x) ´ r ď g(x) ´ r ă f(x) ă g(x) + r ď sup
xPK

g(x) + r ď b

which implies that f P U . Therefore, B(g, r) Ď U ; thus U is open.



2. Let tfnu8
n=1 be a sequence in F such that tfnu8

n=1 converges uniformly to f on K. Then
f P C (K;R). Moreover, by the fact that a ď fn(x) ď b for all x P K and n P N, we find that
a ď f(x) ď b for all x P K since f(x) = lim

nÑ8
fn(x). This implies that f P F ; thus F is closed

(since it contains all the limit points).

3. Consider the case A = (0, 1). Then the function f(x) = x belongs to B; however, for every
r ą 0, the function g(x) = f(x) ´

r

2
belongs to B(f, r) since

}f ´ g}8 = sup
xP(0,1)

ˇ

ˇf(x) ´ g(x)
ˇ

ˇ =
r

2
ă r .

However, g R B since if 0 ă x ! 1, we have g(x) ă 0. In other words, there exists no
r ą 0 such that B(f, r) Ď B; thus B is not open. ˝

Problem 3. Define B to be the set of all even functions in the space C ([´1, 1];R); that is, f P B

if and only if f is continuous on [´1, 1] and f(x) = f(´x) for all x P [´1, 1]. Prove that B is
closed but not dense in C ([´1, 1];R). Hence show that even polynomials are dense in B, but not in
C ([´1, 1];R).

Proof. Let tfku8
k=1 be a sequence in B and tfku8

k=1 converges uniformly to f on [´1, 1]. Then f is
continuous. Moreover, for each x P [´1, 1],

f(x) = lim
kÑ8

fk(x) = lim
kÑ8

fk(´x) = f(´x) ;

thus f is even. Therefore, f P B which shows that B is closed. However, B is not dense in B since
there exists no f P B satisfying that

max
xP[´1,1]

ˇ

ˇf(x) ´ x
ˇ

ˇ ă
1

2

since

max
xP[´1,1]

ˇ

ˇf(x) ´ x
ˇ

ˇ ě maxt
ˇ

ˇf(1) ´ 1
ˇ

ˇ,
ˇ

ˇf(´1) + 1
ˇ

ˇ

(

= maxt
ˇ

ˇf(1) ´ 1
ˇ

ˇ,
ˇ

ˇf(1) + 1
ˇ

ˇ

(

ě 1 .

Let A denote the collection of even polynomials, and f be an even continuous function. Then
the Weierstrass Theorem implies that there exists a sequence of polynomial tpnu8

n=1 such that

lim
nÑ8

max
xP[0,1]

ˇ

ˇf(
?
x) ´ pn(x)

ˇ

ˇ = 0 .

For each n P N, define qn : [´1, 1] Ñ R by qn(x) = pn(x
2). Then tqnu8

n=1 Ď A and

lim
nÑ8

max
xP[´1,1]

ˇ

ˇf(x) ´ qn(x)
ˇ

ˇ = lim
nÑ8

max
xP[0,1]

ˇ

ˇf(x) ´ pn(x
2)
ˇ

ˇ = lim
nÑ8

max
xP[0,1]

ˇ

ˇf(
?
x) ´ pn(x)

ˇ

ˇ = 0

which shows that tqnu8
n=1 converges uniformly to f on [´1, 1]; thus A is dense in B. On the other

hand, since A Ď B, we must have sA Ď sB Ĺ C ([´1, 1];R) which implies that A is not dense in
C ([´1, 1];R). ˝



Problem 4. Let f : [0, 1] Ñ R be a continuous function.

1. Suppose that
ż 1

0

f(x)xndx = 0 @n P N Y t0u .

Show that f = 0 on [0, 1].

2. Suppose that for some m P N,
ż 1

0

f(x)xndx = 0 @n P t0, 1, ¨ ¨ ¨ ,mu .

Show that f(x) = 0 has at least (m+ 1) distinct real roots around which f(x) change signs.

Proof. 1. By the Weierstrass Theorem, for each k P N there exists a polynomial pk such that
}f ´ pk}8 ă

1

k
. Since

ż 1

0
f(x)xn dx = 0 for all n P N Y t0u, we find that

ż 1

0

f(x)pk(x) dx = 0 @ k P N .

Note that f(f ´ pk) converges to the zero function uniformly on [0, 1] since

}f(f ´ pk)}8 ď }f}8}f ´ pk}8 ď
1

k
}f}8 Ñ 0 as k Ñ 8 ;

thus by the fact that
ż 1

0

f(x)2 dx =

ż 1

0

f(x)
[
f(x) ´ pk(x)

]
dx ,

we find that
ż 1

0
f(x)2 dx = 0. Therefore, by the continuity of f , we conclude that f = 0 on

[0, 1].

2. Let

D =
!

k P N
ˇ

ˇ

ˇ
if f P C ([0, 1];R) and f changes signs around 0 ă α1 ă ¨ ¨ ¨ ă αk ă 1,

then y = f(x)
k
ź

j=1

(x ´ αj) does not change sign
)

.

Suppose that f P C ([0, 1];R) changes sign only around 0 ă α1 ă 1. Then y = f(x)(x ´ α1)

does not change sign so that 1 P D. Assume that k P D. If f changes signs only around
0 ă α1 ă α2 ă ¨ ¨ ¨ ă αk+1 ă 1, then the function y = f(x)(x´αk+1) changes signs only around

0 ă α1 ă ¨ ¨ ¨ ă αk ă 1; thus y = f(x)(x´αk+1)
k
ś

j=1

(x´αj) = f(x)
k+1
ś

j=1

(x´αj) does not change
sign which shows that k + 1 P D. By induction, we conclude that D = N.

Now suppose the contrary that f(x) = 0 has at most m distinct real roots 0 ă α1 ă ¨ ¨ ¨ ă

αk ă 1, where 0 ď k ď m, around which f(x) change signs. Then y = f(x)
k
ś

j=1

(x ´ αj) does



not change sign. W.L.O.G., we assume that f(x)
k
ś

j=1

(x´αj) ě 0 for all x P [0, 1]. Then by the

fact that
ż 1

0

f(x)xndx = 0 @n P t0, 1, ¨ ¨ ¨ ,mu .

and k ď m, we find that
ż 1

0

f(x)
k
ź

j=1

(x ´ αj) dx = 0 ;

thus the sign-definite property and the continuity of the function y = f(x)
k
ś

j=1

(x ´ αj) implies

that f(x)
k
ś

j=1

(x ´ αj) = 0 for all x P [0, 1]. Therefore, f(x)
k
ś

j=1

(x ´ αj) = 0 for all x P

[0, 1]ztα1, α2, ¨ ¨ ¨ , αku or equivalently, f(x) = 0 for all x P [0, 1]ztα1, α2, ¨ ¨ ¨ , αku. The continuity
of f further implies that f = 0 on [0, 1], a contradiction to that f has
at most m distinct real roots around which f changes signs. ˝

Problem 5. Let f : [0, 1] Ñ R be continuous. Show that

lim
nÑ8

ż 1

0

f(x) cos(nx) dx = 0 and lim
nÑ8

ż 1

0

f(x) sin(nx) dx = 0 .

Proof. We only show the latter case since the proof of the former case is the same.
We first show that lim

nÑ8

ż 1

0
xk sin(nx) dx = 0 for all k P N Y t0u. Let

D =
!

k P N Y t0u

ˇ

ˇ

ˇ
lim
nÑ8

ż 1

0
xk sin(nx) dx = 0

)

.

Then 0 P D and 1 P D since
ż 1

0

sin(nx) dx =
´ cos(nx)

n

ˇ

ˇ

ˇ

x=1

x=0
=

cos 0 ´ cosn
n

Ñ 0 as n Ñ 8

and
ż 1

0

x sin(nx) dx =
´x cos(nx)

n

ˇ

ˇ

ˇ

x=1

x=0
+

1

n

ż 1

0

cos(nx) dx = ´
cosn
n

+
sinn

n2
Ñ 0 as n Ñ 8 .

Suppose that t0, 1, ¨ ¨ ¨ , ku Ď D. Then
ż 1

0

xk+1 sin(nx) dx = ´
xk+1 cos(nx)

n

ˇ

ˇ

ˇ

x=1

x=0
+

k + 1

n

ż 1

0

xk cos(nx) dx

= ´
cosn
n

+
k + 1

n

[xk sin(nx)
n

ˇ

ˇ

ˇ

x=1

x=0
´

k

n

ż 1

0

xk´1 sin(nx) dx
]

= ´
cosn
n

+
(k + 1) sinn

n2
´

(k + 1)k

n2

ż 1

0

xk´1 sin(nx) dx Ñ 0 as n Ñ 8.

By induction, D = N Y t0u.
Having established that D = N Y t0u, we immediately conclude that

lim
nÑ8

ż 1

0

p(x) sin(nx) dx = 0 for all polynomial p .



Let ε ą 0 be given. By the Weierstrass Theorem, there exists a polynomial p such that }f ´p}8 ă
ε

2
.

By the fact that lim
nÑ8

ż 1

0
p(x) sin(nx) dx = 0, there exists N ą 0 such that

ˇ

ˇ

ˇ

ż 1

0

p(x) sin(nx) dx
ˇ

ˇ

ˇ
ă

ε

2
whenever n ě N .

Therefore, if n ě N ,
ˇ

ˇ

ˇ

ż 1

0

f(x) sin(nx) dx
ˇ

ˇ

ˇ
ď

ˇ

ˇ

ˇ

ż 1

0

[
f(x) ´ p(x)

]
sin(nx) dx

ˇ

ˇ

ˇ
+
ˇ

ˇ

ˇ

ż 1

0

p(x) sin(nx) dx
ˇ

ˇ

ˇ

ď

ż 1

0

}f ´ p}8 dx+
ε

2
ă ε

which establishes that lim
nÑ8

ż 1

0
f(x) sin(nx) dx = 0. ˝

Problem 6. Put p0 = 0 and define

pk+1(x) = pk(x) +
x2 ´ p2k(x)

2
@ k P N Y t0u .

Show that tpku8
k=1 converges uniformly to |x| on [´1, 1].

Hint: Use the identity

|x| ´ pk+1(x) =
[
|x| ´ pk(x)

][
1 ´

|x| + pk(x)

2

]
(0.1)

to prove that 0 ď pk(x) ď pk+1(x) ď |x| if |x| ď 1, and that

|x| ´ pk(x) ď |x|

(
1 ´

|x|

2

)k

ă
2

k + 1

if |x| ď 1.

Proof. Let D =
␣

k P N
ˇ

ˇ 0 ď pk(x) ď pk+1(x) ď |x| @ x P [´1, 1]
(

. We first note that if 0 ď pk(x) ď |x|

for all x P [´1, 1], then

1. using the iterative formula, pk+1(x) ´ pk(x) =
x2 ´ p2k(x)

2
ě 0 for all x P [´1, 1] which shows

that pk+1(x) ě pk(x) ě 0.

2. using (‹) we find that |x| ´ pk+1(x) ě
[
|x| ´ pk(x)

]
(1´ |x|) ě 0 which shows that pk+1(x) ď |x|.

Therefore, D is indeed the set
␣

k P N
ˇ

ˇ 0 ď pk(x) ď |x| @ x P [´1, 1]
(

. The fact that p1(x) =
x2

2
implies that 1 P D, while if k P D implies that k + 1 P D. By induction, D = N.

Using (‹) again, we find that

0 ď |x| ´ pk(x) =
[
|x| ´ pk´1(x)

][
1 ´

|x| + pk(x)

2

]
ď

[
|x| ´ pk´1(x)

](
1 ´

|x|

2

)
@ k P N ;

thus

0 ď |x| ´ pk(x) ď
[
|x| ´ pk´1(x)

](
1 ´

|x|

2

)
ď

[
|x| ´ pk´2(x)

](
1 ´

|x|

2

)
ď ¨ ¨ ¨ ď

[
|x| ´ p0(x)

](
1 ´

|x|

2

)k
= |x|

(
1 ´

|x|

2

)k
.



By the fact that |x|
(
1 ´

|x|

2

)k
ď

2

k + 1
for all x P [´1, 1], we conclude that

lim
kÑ8

max
xP[´1,1]

ˇ

ˇpk(x) ´ |x|
ˇ

ˇ = 0

which shows that tpku8
k=1 converges uniformly to y = |x| on [´1, 1]. ˝

Problem 7. Let f : [0, 1] Ñ R be continuous and ε ą 0. Prove that there is a simple function g

(defined in Example 7.75 in the lecture note) such that }f ´ g}8 ă ε.

Proof. Let ε ą 0 be given. Since f is continuous on [0, 1], f is uniformly continuous; thus there exists
δ ą 0 such that

ˇ

ˇf(x) ´ f(y)
ˇ

ˇ ă
ε

2
whenever |x ´ y| ă δ and x, y P [0, 1] .

Let n ą 0 be such that 1

n
ă δ, and let xk =

k

n
for 0 ď k ď n. Then P =

␣

0 = x0 ă x1 ă ¨ ¨ ¨ ă xn = 1
(

is a partition of [0, 1]. Define

g(x) =

"

g(xk) if x P [xk, xk+1) and 0 ď k ď n ´ 2 ,

g(xn´1) if x P [xn´1, xn] .

Then g is a simple function, and
ˇ

ˇf(x) ´ g(x)
ˇ

ˇ ă ε for all x P [0, 1]. The latter implies that

}f ´ g}8 ” sup
xP[0,1]

ˇ

ˇf(x) ´ g(x)
ˇ

ˇ ď
ε

2
ă ε

which shows that we find out function g. ˝

Problem 8. Suppose that pn is a sequence of polynomials converging uniformly to f on [0, 1] and f

is not a polynomial. Prove that the degrees of pn are not bounded.
Hint: An Nth-degree polynomial p is uniquely determined by its values at N + 1 points x0, ¨ ¨ ¨ , xN

via Lagrange’s interpolation formula

p(x) =
N
ÿ

k=0

πk(x)
p(xk)

πk(xk)
,

where πk(x) = (x ´ x0)(x ´ x1) ¨ ¨ ¨ (x ´ xN)/(x ´ xk) =
ś

1ďjďN
j‰k

(x ´ xj).

Proof. Suppose the contrary that there exists a sequence of polynomial tpnu8
k=1 which converges

uniformly to f on [0, 1] and deg(pn) ď N for all n P N. W.L.O.G. we assume that

}pn ´ f}8 ă 1 @n P N .

Then
ˇ

ˇpn(x)
ˇ

ˇ ď }f}8 + 1 for all x P [0, 1] and n P N.
Since deg(pn) ď N , using the Lagrange interpolation formula with xk = k/N , we have

pn(x) =
N
ÿ

k=0

πk(x)
pn(xk)

πk(xk)
=

N
ÿ

j=0

ajnx
j .



Let [N/2] denote the largest integer smaller than N/2. Note that
ˇ

ˇπk(xk)
ˇ

ˇ =
k

N
¨
k ´ 1

N
¨ ¨ ¨ ¨ ¨

1

N
¨
1

N
¨ ¨ ¨ ¨ ¨

N ´ k

N
ě

[N/2]!

NN

so that
ˇ

ˇ

ˇ

pn(xk)

πk(xk)

ˇ

ˇ

ˇ
ď

(}f}8 + 1)NN

[N/2]!
.

Moreover, πk(x) =
N
ř

j=0

cjx
j with |cj| ď CN

[N/2]. Therefore,

|ajn| =

ˇ

ˇ

ˇ

ˇ

ˇ

N
ÿ

k=0

cj
pn(xk)

πk(xk)

ˇ

ˇ

ˇ

ˇ

ˇ

ď (N + 1)
(}f}8 + 1)NN

[N/2]!
CN

[N/2] @ 0 ď j ď N and n P N .

In other words, the coefficients of each pn is bounded by a fixed constant. This allows us to pick a
subsequence tpnk

u8
k=1 of tpnu8

n=1 such that

lim
kÑ8

ajnk
= aj exists for all 0 ď j ď N .

This implies that tpnk
u8
k=1 converges uniformly to the polynomial p(x) =

N
ř

j=0

ajx
j since tpnk

u8
k=1 con-

verges pointwise to p and tpnu8
n=1 converges uniformly on [0, 1] so that tpnk

u8
k=1 converges uniformly

on [0, 1]. On the other hand, since tpnu8
n=1 converges uniformly to f on [0, 1], we conclude that f = p,

a contradiction. ˝

Problem 9. Consider the set of all functions on [0, 1] of the form

h(x) =
n
ÿ

j=1

aje
bjx ,

where aj, bj P R. Is this set dense in C ([0, 1];R)?

Proof. Let A =
!

řn
j=1 aje

bjx
ˇ

ˇ

ˇ
aj, bj P R

)

. Then

1. A is an algebra since if f(x) =
n
ř

j=1

aje
bjx and g(x) =

m
ř

k=1

cke
dkx, we have

( n
ÿ

j=1

aje
bjx

)
(

m
ÿ

k=1

cke
dkx

)
=

n
ÿ

j=1

m
ÿ

k=1

ajcke
(bj+dk)x =

N
ÿ

ℓ=1

Aℓe
Bℓx

for some Aℓ, Bℓ P R, and clearly, f + g P A and cf P A if c P R.

2. A separates points of [0, 1] since the function f(x) = ex P A which is strictly monotone so that
f(x1) ‰ f(x2) for all x1 ‰ x2.

3. A vanishes at no point of [0, 1] since the function f(x) = ex P A which is non-zero at every
point of [0, 1].

By the Stone Theorem, A is dense in C ([0, 1];R). ˝


