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Problem 1. Let § : (¢([-1,1];R),| - |) — R be defined by §(f) = f(0). Show that § is linear and

uniformly continuous.

Proof. Let ce R and f,g € €([—1,1];R). Then

o(cf +g) =cf(0)+g(0) = cd(f) +(g)

which shows that ¢ is linear on %'([—1,1]; R).
For the uniform continuity of 4, let € > 0 be given. Choose § = e. Then if | f — g|, < J, we have

1£(0) = g(O)| < |f — gl < =¢

which implies that ¢ is uniformly continuous. =
Problem 2. Let (M, d) be a metric space, and K < M be a compact subset.

1. Show that the set U = {f € ¢(K;R)|a < f(z) < b for all z € K} is open in (€(K;R), | - [x)
for all a,b € R.

2. Show that the set F' = {f € €(K;R)|a < f(z) <bfor all z € K} is closed in (¢(K;R), || |«)
for all a,b € R.

3. Let A < M be a subset, not necessarily compact. Prove or disprove that the set B = { fe
€y(A;R) | f(x) > 0 for all z € A} is open in (G4(A;R), [ - o).

Proof. 1. Let g € U. By the Extreme Value Theorem (Corollary ?7?), there exists xg,z; € K such
that

g(zo) = inf g(r)  and  g(x;) =supg(x).
reK e K

Therefore, a < inff(’g(ax) < supg(z) < b. Let r = min {b — sup g(z), in}f;g(a:) —a}. Then r > 0.
xe reK xe

zeK
Moreover, if f € B(g,r) and x € K, we have

£@) = g(@)| < sup|£(w) — g(@)| = I ~ gllo <7

Therefore, if f € B(g,r), by the fact that » < b — sup g(x) and r < inf g(z) — a, we conclude

zeK zeK
that if r € K,

a < infg(z) —r <g(@)—r< fx) <glx)+r<supg(x) +r<b
TE reK

which implies that f € U. Therefore, B(g,r) < U; thus U is open.



2. Let {f.}°; be a sequence in F' such that {f,}>°, converges uniformly to f on K. Then

f € €(K;R). Moreover, by the fact that a < f,(x) < b for all z € K and n € N, we find that

a < f(z) <bforall x € K since f(z) = lim f,(x). This implies that f € F; thus F' is closed
n—00

(since it contains all the limit points).

3. Consider the case A = (0,1). Then the function f(z) = x belongs to B; however, for every
r > 0, the function g(z) = f(x) — g belongs to B(f,r) since

r
I = gl = sup [F(2) - g(@)] = 5 <.
z€(0,1)

However, g ¢ B since if 0 < z « 1, we have g(x) < 0. In other words, there exists no
r > 0 such that B(f,r) € B; thus B is not open. o

Problem 3. Define B to be the set of all even functions in the space €' ([—1, 1];R); that is, f € B
if and only if f is continuous on [—1,1] and f(x) = f(—=z) for all z € [-1,1]. Prove that B is

closed but not dense in € ([—1, 1]; R). Hence show that even polynomials are dense in B, but not in

€ ([-1,1];R).

Proof. Let {fix}>, be a sequence in B and {fy}72, converges uniformly to f on [—1,1]. Then f is

continuous. Moreover, for each z € [—1, 1],
flz) = lim fi(z) = lim fi(=z) = f(=2);
k—o0 k—o0
thus f is even. Therefore, f € B which shows that B is closed. However, B is not dense in B since

there exists no f € B satisfying that

1
e /@) = o] <3

since

max |f(z) — 2| = max{|f(1) — 1|, | f(—1) + 1|} = max{|f(1) — 1],|f(1) + 1]} > 1.

ze[—1,1

Let A denote the collection of even polynomials, and f be an even continuous function. Then

the Weierstrass Theorem implies that there exists a sequence of polynomial {p,}>_; such that

lim max | f(v/z) — pa(z)| = 0.

n— z€(0,1]

For each n € N, define ¢, : [~1,1] — R by ¢,(z) = p,(2?). Then {¢,}*, < A and

lim max |f(z) — ¢u(z)| = lim max |f(z) — pu(2?)| = lim max |f(v/z) — pu(z)| =0

n—o zge[—1,1] n— zel0,1] n— z€(0,1]

which shows that {g,}’2; converges uniformly to f on [—1,1]; thus A is dense in B. On the other
hand, since A € B, we must have A € B ¢ %([—1,1];R) which implies that A is not dense in
Cg([—l,l];R). O



Problem 4. Let f:[0,1] — R be a continuous function.

1. Suppose that
1
J f(x)z"dx =0 VneNu{0}.
0

Show that f =0 on [0, 1].
2. Suppose that for some m € N,
1
f f(z)z"dx =0 Vne{0,1,---,m}.
0

Show that f(x) = 0 has at least (m + 1) distinct real roots around which f(z) change signs.

Proof. 1. By the Weierstrass Theorem, for each k& € N there exists a polynomial p; such that
1
If = pello < % Since J f(z)z™dx =0 for all n € N U {0}, we find that
0

L f(x)pe(x)dr =0  VkeN.

Note that f(f — px) converges to the zero function uniformly on [0, 1] since

1
I = pe)loo < [ flloollf = Prlloe < 21 Flec =0 as & — o0
thus by the fact that

1
0

1
f f(a:)2 dr = f f(zx) [f(x) —pk(:r)] dzx
0
1
we find that J f(x)?dx = 0. Therefore, by the continuity of f, we conclude that f = 0 on
0
[0, 1].
2. Let

D= {k; € N’if fe%(0,1];R) and f changes signs around 0 < ag < -+ < o < 1,

=

then y = f(x) | |(z — a;) does not change sign} :

1

.
Il

Suppose that f € €([0,1];R) changes sign only around 0 < a; < 1. Then y = f(x)(z — ay)
does not change sign so that 1 € D. Assume that £k € D. If f changes signs only around

0<a; <@g <--- <agser <1, then the function y = f(x)(xz — ayy1) changes signs only around
k k+1
0<a; < - <ap<lythusy = f(z)(x — 1) [ [(x — ;) = f(z) [ [ (z — ;) does not change

sign which shows that k +1e D. By induction,jivle conclude that D= N.

Now suppose the contrary that f(z) = 0 has at most m distinct real roots 0 < ay < -+ <
k

ap < 1, where 0 < k < m, around which f(z) change signs. Then y = f(z) [[(z — a;) does
j=1



k
not change sign. W.L.O.G., we assume that f(z) [ [(z —«;) = 0 for all x € [0, 1]. Then by the

J=1

fact that .
f f(z)z"dz =0 Vne{0,1,--- ,m}.
0

and k < m, we find that
k

1
| 7@ [~ ay) s =o:
0 j=1
k
thus the sign-definite property and the continuity of the function y = f(z) [ [(z — «;) implies

1
k k

j
that f(z) [[(x — a;) = 0 for all x € [0,1]. Therefore, f(z) [[(z — ;) = 0 for all z €

j=1 j=1
[0, 1\{ct, g, - - - , g} or equivalently, f(x) = 0forall z € [0, 1]\{a1, @z, - - -,y }. The continuity
of f further implies that f = 0 on [0, 1], a contradiction to that f has

at most m distinct real roots around which f changes signs. =

Problem 5. Let f:[0,1] — R be continuous. Show that

1 1

lim | f(x)cos(nx)dz =0 and lim | f(x)sin(nz)dx =0.

Proof. We only show the latter case since the proof of the former case is the same.

1

We first show that lim [ z*sin(nz)dz =0 for all ke N U {0}. Let

n—00 0

D= {kz e Nu {0} | lim fl 2¥sin(nx) dr = O} :

n—o0 0

Then 0 € D and 1 € D since

and

=1 cos(0 —cosn

_—COS(nx) = 50 as n— o

1
f sin(nx) dr =
0

xsin(nz) dr =

cos(nx) dr = — +— —0 as n—w.
0 n =0 N Jg n n

Jl —x cos(nx)

z=1 1]1 cosn sinn

Suppose that {0,1,---  k} < D. Then

" sin(nx) dr = —

Jl Bl 2k cos(nx)
0 n

e=1 k41 *
+ + J z* cos(nz) da
=0 n 0

__cosm E+1 [l‘k sin(nz) ==tk fl 2" ! sin(nx) do

n n n e=0 N Jy

_cosn (k+1)sinn  (k+1)k Jl .

2" sin(nr)dr — 0 as n — 0.

n n? n? 0

By induction, D = N u {0}.
Having established that D = N u {0}, we immediately conclude that

1
lim | p(z)sin(nz)dez =0 for all polynomial p.

n—0o0 0



Let € > 0 be given. By the Weierstrass Theorem, there exists a polynomial p such that || f —p[, < %
1

By the fact that lim p(x) sin(nx) dx = 0, there exists N > 0 such that

n—ao0
‘J ) sin(nz dx‘ < % whenever n = N .
Therefore, if n >
‘ f f(x)sin(nx) dw ‘ J | sin(na dx‘ + ‘ J x) sin(nzx) dx
<fﬁ—p@dx+§<e
0
1
which establishes that lim | f(z)sin(nz)dz = 0. o

n—a0 0

Problem 6. Put py = 0 and define

2 —p2(x
Pet1() = pe(x) + 5’“( ) Ykenu {0}.
Show that {py};2, converges uniformly to |z| on [—1,1].
Hint: Use the identity
x|+ pr(T
o] — pica(z) = [Jo] — pul)] [1 - 1A 2D (0.1)

to prove that 0 < px(z) < pry1(x) < |z if |z] < 1, and that

|rc|>’f 2
— < —_
o = pu(@) < el (1= ) <

if || <1

Proof. Let D = {k € N|0 < py(2) < pry1(z) < |z| Vo € [-1,1]}. We first note that if 0 < p(z) < |z]

for all z € [—1, 1], then

1. using the iterative formula, pyi1(z) — pr(x) = % > 0 for all x € [-1,1] which shows
that pri1(z) = pr(z) = 0.

2. using (+) we find that |z| — pry1(z) = [|z] — pr(z)] (1 —|z|) = 0 which shows that pji(z) < |z].

2
Therefore, D is indeed the set {k € N|0 < pi(x) < |z| Vo € [-1,1]}. The fact that p(z) = %
implies that 1 € D, while if kK € D implies that kK + 1 € D. By induction, D = N.

Using (*) again, we find that

0 < |z] - pr(z) = Ux! _pk—l(x)} [1 - W} < Ul’| _pkfl(mﬂ( - |x2‘) VkeN;

thus
0< fal — pe(a) < [lal — pea(@)] (1 = ) < [lal — pea(@)] (1 - )
<o el = po@)] (1 - 2 = a1 - BE,



By the fact that |z](1 — —)k < for all x € [—1, 1], we conclude that

kE+1

I —lzll=0
lim max pi(z) — |2|]

which shows that {py};2, converges uniformly to y = |z| on [—1, 1]. o

Problem 7. Let f : [0,1] — R be continuous and ¢ > 0. Prove that there is a simple function ¢

(defined in Example 7.75 in the lecture note) such that ||f — g[, < e.

Proof. Let € > 0 be given. Since f is continuous on [0, 1], f is uniformly continuous; thus there exists
0 > 0 such that

whenever |z —y| <6 and z,y € [0,1].

|f(z) = fy)| <

DN ™

Letn>0besuchthat%<5,andletxk:%for()<k‘<n. ThenP:{0:$0<:ﬁ1<---<xn:1}

is a partition of [0, 1]. Define

() { g(xg) fxelrg,apn)and0<k<n-—2,
xTr) =
g

(1) fxe[r,q,2,].
Then g is a simple function, and |f(z) — g(z)| < ¢ for all z € [0,1]. The latter implies that

<€

DO | ™

|f = glw = sup |f(z) —g(2)] <
z€[0,1]

which shows that we find out function g. O

Problem 8. Suppose that p, is a sequence of polynomials converging uniformly to f on [0, 1] and f
is not a polynomial. Prove that the degrees of p, are not bounded.
Hint: An Nth-degree polynomial p is uniquely determined by its values at N + 1 points xg, - ,zn

via Lagrange’s interpolation formula

where m(z) = (z — zo)(x — 1) - (x — zn) /(2 — %) = KQN(SU — ;).

Proof. Suppose the contrary that there exists a sequence of polynomial {p,}{; which converges
uniformly to f on [0, 1] and deg(p,) < N for all n e N. W.L.O.G. we assume that

1P — flloo <1 VYneN.

Then |p,(z)| < [ flw + 1 for all z € [0,1] and n € N.

Since deg(p,) < N, using the Lagrange interpolation formula with 2, = k/N, we have

N

) = X w22 = Y e

k=0



Let [N /2] denote the largest integer smaller than N /2. Note that

E k-1 1 1 N—k>[N/2]!
N N N N N ~ NN

so that

palr)) _ (1S DN

M=

Moreover, mx(z) = Y, ¢;a? with |¢;] < C[JZV\,/Z}. Therefore,

7=0
N

cj——=
= (@)

In other words, the coefficients of each p,, is bounded by a fixed constant. This allows us to pick a

(Iflleo + DNV
N /2]!

|ajn| = < (N+1) CNj VO<j<NandneN.

subsequence {p,, }7=, of {p,};~; such that

klim @jn, = a;j exists for all 0 < j < N.
—00

N .

This implies that {p,, },~; converges uniformly to the polynomial p(z) = Y] a;27 since {py,, };-, con-
7=0

verges pointwise to p and {p,}’°; converges uniformly on [0, 1] so that {p,, }{=; converges uniformly

on [0, 1]. On the other hand, since {p,}>°_; converges uniformly to f on [0, 1], we conclude that f = p,

a contradiction. o

Problem 9. Consider the set of all functions on [0, 1] of the form

n

h(z) = Z a;e’"

=1
where a;, b; € R. Is this set dense in €([0, 1];R)?

Proof. Let A= {Zn a;ebi®

j=1

a;,b; € R}. Then

1. A is an algebra since if f(z)

J

<Zn: ajebja:> (i Ckedkx> _ Zn: i ajcke(bj—l—dk)x _ Z AEGBN:
j=1

k=1 j=1k=1 =1

n m
a;eb® and g(x) = Y. cpe®™®, we have
=1 k=1

for some Ay, By € R, and clearly, f + g€ A and cf € A if ce R.

2. A separates points of [0, 1] since the function f(z) = e* € A which is strictly monotone so that
f(xl) #* f(ZﬂQ) for all Ty # Ta.

3. A vanishes at no point of [0,1] since the function f(x) = e* € A which is non-zero at every
point of [0, 1].

By the Stone Theorem, A is dense in € ([0, 1]; R). a



