Exercise Problem Sets 7

Apr. 06. 2023
Problem 1. 1. Let f: [—m, 7] be a Riemann integrable function. Show that
hmJ f(x coslmdx—hm f(z)sinkzdx =0.
k—o0 k—ow J_ .
2. Show the Riemann-Lebesgue Lemma
If f:[—m, 7] — R is an integrable function, then
lim f( )cos kx dx = hm f(z)sinkxdzr =0.
k—00 k—oo J_ .
Hint: First show that for every e > 0 there exists a Riemann integrable function g : [—m, 7] —

R such that f ‘f(x) — g(:v)‘ dr < &, then apply the conclusion in 1.

Proof. 1. Let € > 0 be given. Then by Lemma 6.63 in the lecture note, there exists g € € (|—m, 7]; R)
such that
f(z) <glx) < sup f(z) Vaze|[-mn] and f(z)dx > J g(x)dr — .

zE[—7,7] -7 3
By the Weierstrass Theorem, there exists a polynomial p such that
lg = ple < o
g = Plloo 6n

Since p is a polynomial, integrating by parts (or by Problem 5 of Exercise 6) we can show that

lim p(x)coskrdr = lim | p(z)sinkzdr =0.

k—o0 s k—0o0 .

Therefore, there exists N > 0 such that if &k > N,
‘J p(z) COSk‘Zde) < % and ‘J p(m)sink,’xd:p‘ < g.

—Tr

Therefore, if £k > N,
’ ) cos kx dx‘ < ‘f [f(z) — g(z)] cos kz dx‘ + ‘J [9(z) — p()] cos kx dx‘

+

f p(z) cos kx da:‘

—T

< [ 1) -swlde+ [ lg-plodes

<£r [g(a:)—f(a:)}dm—l—Jwada:—l—g §+§ 3

and similarly,

‘J f(z)cos kx dx‘ <¢e whenever k> N.

—T



2. Let gp(x) = (fT A k)(z) — (f~ A k)(z). Then

[ 1 -awlir=[ 11w - 50 - i)

—T

J‘JH —(fTAE)( )‘da:%—[j ‘f_(x)—(f_/\k)(x)\da:;

thus by the fact that

s s s

klgrolo ) (ftAk)(z)dx = ) fH(x)dr and lgrolo (fAk)(zx)de = _Trf(x)dq;

we find that there exists K > 0 such that

J |f(z) = g(2)] dox < g whenever k> K.

Let h = gk. Note that h is Riemann integrable on [—m, 7]; thus part 1 implies that there exists
N > 0 such that if k > N,

’J ) cos kxdx’ < % and ‘J h(x)sin kx dw’ < g.

Therefore, if k£ >

IJ f(x Cosk:md:v—’J }coskxdm‘—i—‘f cosk::zd:v‘
<J | ‘d:L‘-f—)J coskxdx‘<g+§=6

and similarly,

‘J f(z)sinkx dx‘ <¢e whenever k> N. o

Problem 2. Suppose that f € €%*(T); that is, f is 2r-periodic Hélder continuous function with
exponent « for some « € (0,1]. Show that (without using the Berstein Theorem) the Fourier series

of f converges pointwise to f, by completing the following.

1. Explain why it is enough to show that s,(f,0) — f(0) as n — c0. Also explain why we can
assume that f(0) = 0.

2. Show that |
lim (sn(f, 0) - - f( )Smm dx) ~0.

n—o0 e
Therefore, it suffices to show that lim f(z )Sm " dr =0if f (0) =

n—w J_,

3. Show that if f € €%*(R) and f(0) = 0, then the function y = fix) is integrable. Apply the

Riemann-Lebesgue Lemma to conclude that s,(f,0) — 0 as n — oo.



Proof. 1. Suppose that one can show that if g is a 27-periodic Holder continuous function with
exponent « € (0,1], then s,(g,0) — ¢(0) as n — . If f is 2w-periodic Holder continuous
function with exponent o € (0,1] and a € R, let g(x) = f(x + a). Then g is a 2m-periodic

Holder continuous function with exponent «; thus s,(g,0) — ¢(0) as n — .

On the other hand, let {c,};2, and {sg}, be the Fourier coefficients of f and {¢x}7, and

{5k}72, be the Fourier coefficients of g. Then

1 (" 1 ("
Cp = — flx+a)coskrdr =— f(x)cosk(zx —a)dz
TJ)_, TJ)_,
1 s
=— f(x)(cos kx cos ka + sin kz sin ka) dx
™ —Tr

= ¢ cos ka + si sinka .

Note that
g, _% Z ¢k cos(k - 0) + 55 sin(k - 0)] Z (cx coska + sy sinka) =s,(f, a);
Py

thus the fact that ¢(0) = f(a) implies that s,(f,a) — f(a) as n — co. Moreover, if f(0) # 0,
we consider the function h(z) = f(z) — f(0). Then h(0) = 0 and s,(f,z) = su(h,z) + f(0)
so that if the s,(h,0) converges to 0, then s,(f,0) converges to f(0). In other words, we can
further assume that f(0) = 0.

2. Note that s,(f,z) = (D, * f)(z); thus

g sin(n + %)z
2(f,0) = ——2dx.
(0= [ T
Therefore,
1 sin ne sm n+ i)z _ sinnz
W(f,0) = = | a
salf.0= 2| @ = | o[ -
f It sm NI COS § —.l—s:n 5 CoSnL  sin nx) e
2sin 2 x
1 COS 3 1
% f( )cosnxalac—i—7r f( )<281n— E)Sinnxdx.
Note that
cosy 1 rcosy —2sing (1l —2)—2(2 -2
1im< '2——>:lim 2 — lim ( 8) (2 48):0;
s=0\28ing T z—0 2 sin 3 z—0 2x- 3
: cosy 1Y\ . : :
thus the function y = f(z) (23‘11 - — ;) is continuous on [—m, 7]. By the Riemann-Lebesgue
my
Lemma,
4 ) 4 CoS 3 1N .
lim f( ) cosnx dr = lim f(x)( —= ——> sinnxdr =0.
n—0oo n—oo J__ 2sing
Therefore,
1
lim (sn(f, 0) - - f( )Sm”x dx) ~0.
n—00 v



3. Since f € €%%(T) for some « € (0,1],

) —
M — su (=) = f(y)] .
sty T —yl®
In particular, if x # 0,
x x)— f(0 x) —
@] _ @) = 1O @l
] |z — 0l wry T —y[®
thus
‘m‘éMMal Va#0.
x
Therefore, the comparison test implies that the function y = @) is integrable on [, 7] since
x
T 1 - a
J r* tdr = lim —2° -
0 e—0T (¢ r=¢c «
and the change of varialbe x — —x shows that
0 T «
f lz|*tdr = J o Vdy =
-7 0 o
The Riemann-Lebesgue Lemma then implies that lim J f(x@ sinnx dx = 0. =
n—aoo T
sinx

Q0
Problem 3. Assuming that the improper integral J dx = I exists. Establish its value by first
0

i
using the Riemann-Lebesgue lemma to show that

7

I = lim dr = = lim D, (x)dx,

n—o0 0 X n—oo |

" sin

™

where D,, is the Dirchlet kernel.

Proof. By the substitution of variable x — nz,

nm : T :
sin x sinnx
dr = dz .
0 T 0 x

Similar to the proof of Problem @, we have

lim W[

sz
n—o J_ T 281115

sinnr  sin(n + 3)x

]dm:O;

thus by the fact that the function x — ST i even, using the definition of the Dirichlet kernel we

x
find that
nmw _: 1 T o 1 T sin(n + 1 T T
I = lim P e = = lim PR 1 = = lim f (—xz) dr = = lim D, (x)dx.
n—w J, T 2n—-0 )__ 2no0 ) o 2sing 2 n—w J__
g “ sinx T
Since D, (x)dz = 1, we conclude that J dx = - D

— 0 X



et +e

Problem 4. Let f be the 2m-periodic function defined by f(z) = cosh(z) =

Express it as a Fourier series and compute

for |z| < 7.

Proof. Note that f is an even function, so the Fourier coefficients {s;};~, associated with f is the

zero sequence. Moreover, using the formula

fe‘”’cosbxdx _e (acosbx + bsin bx) el
a? + b?
and we find that
1 (" 1 e*(coskx + ksinkzx) + e *(— cos kx + ksin kx) |z==
Cr = — B f(z)coskxdr = gy = o
e (=) + e T (=1)FL — e (=1)F +em(—1)F e —eT (—1)*
B 2m(1 + k?) N

Since f € €%'(T), we find that

—T

er 4 e ® eE"—e ™ e —e¢ = (=1)* cos kx
_ N $ (D
2 s T k2 +1

Vze[-mml.
k=1

Therefore,
o O

e“+e’”_e”—e’“+e”—e Z 1
2 2r T AR+l

which shows that

=1+ = =4 — = o
2 T _ p—T T _ p—T
=kt er—e 2(em —em)

i 1 T (e” +e T el — e‘”) 1 7w(e™+e™™)
2 2T

Problem 5. Let f be the 27-periodic function defined by f(z) = cos(az) for |z| < m, where a is not

an integer. Express it as a Fourier series and deduce the identity

N
1
meot(ma) = lim Z Va#17Z.

N—00
— n:_Na+n

Proof. First we note that f is an even function, so the Fourier coefficients {s;};2; is the zero sequence.

On the other hand, the Fourier coefficients {cj}{, are given by

1 (™ 1 in(k in(k — T=T
o= fﬂ cos(ax) cos(kx) dr = 9 [sm; :aa)m + Smg{ — aa)x} o
_ Agsin(k+a)r | sin(k—a)ry  (=1)F/ 1 1 '
e e s G ) e
Therefore, by the fact that f e €% (T),
B _sin(am)  sin(am) o w1 1
f(z) = cos(ax) = . (—1) (kz—i—a k_@)cosk:x Vae[—mml.

k=1



In particular, evaluating the function at x = m we obtain that

sin(ar)  sin(am) 1 1
cos(ar) = . Z(_l)k<k+a — k—a) cos km
k=1
_sin(aw)  sin(am) o 1 1
- arm i T ];1 (/{: +a k- a>

thus

On the other hand,

N
1 1 1
_a+;<a+n_n—a>’
so passing to the limit as N — oo we conclude that desired result. =

Problem 6. A family of functions {cpn e ¢(T) ’ neN } is called an approximation of the identity

if
(1) @n(z) = 0; (2) J on(x)dr =1 for every n € N;
T
(3) lim ¢on(z)dx =0 for every § > 0, here we identify T with the interval [—m, 7].
N0 Js<|ol<m

Show that if {¢,}r, is an approximation of the identity and f € €(T), then {¢, * f}r_, converges

uniformly to f as n — 0.

Proof. W.LL.O.G., we may assume that f = 0. By the definition of the convolution,
(6o x D) = F(@)] = [ onle =) dy = f1a)
— [ enle - ) (7(2) - @)y,
T

where we use (2) of the definition above to obtain the last equality. Now given ¢ > 0. Since f € €(T),

there exists > 0 such that |f(z) — f(y)| < % whenever |z — y| < . Therefore,
|(on > f)(2) = f(2)]
<J en(z —y)|f(2) (y)\derf en(x —y)|f(x) = f(y)|dy
lz—y|<d o<|z—yl

€
<—fg0n(x—y)dy+2max|f| on(z)dz .

2 Jr T 5<|z|<m
By (3) of the definition above, there exists N > 0 such that if n > N,

€
n(2)der < ———M— .
L$z|<7rgp ( ) 4maX’]T|f|

(¢n* f)(x) — f(z)| <eforall zeT. o

Therefore, for n > N,




Problem 7. In this problem we show that the collection of trigonometric polynomials &?(T) (defined

in Corollary 7.85 in the lecture note) is dense in %'(T) in another way. Complete the following.

1. Let p,(z) = ¢,(1 4 cosx)™, where ¢, is chosen so that f ¢on(x)dxr = 1. Show that
T

2n—1 (n|)2
Cn = .
m (2n)!
2. Show that for each 0 < § < 7,
lim On(z)dr =0.
=0 Js<la|<n

In other words, {p,}?_; is an approximation of the identity. Therefore, Problem B shows that

{on * 1, converges uniformly to f as n — oo if f e €(T).
3. Show that Z(T) is dense in €(T).

Proof. 1. Let ¢, (z) = ¢,(1 4 cosx)™, where ¢, is chosen so that f ©n(x) dr = 1. First we note that
T
by Wallis’s formula,

s s 1 n s
J (14 cosz)"dx = 2"J ($> dx = 2”J cos™" g dx = 2"! J cos®" g dx

—T —Tr —T

Therefore,

which implies that

2. Now {p,}*_, is clearly non-negative and satisfies (2) of Definition of an approximation of the

identity (given in Problem B) for all n € N. Let 6 > 0 be given.

1 o\ (n!)?
f on(x) dr < f cn(1+ cosd)dr < 22”( + cos ) (n!) ,
5<|z|<n o<|z|<n 2 (2n)!

By Stirling’s formula lim =1,

n!
n—00 4/ 2mnnne "

2
1 o\"™ 2mnnte” "
lim Supf ©n(x) dr < limsup 22”( o8 ) ( )
o< |z|<

n—00 n—00 2 27T(2n) (271)271672”
1 o\"
= lim sup vwn(ﬂ) =0;
n—ao0 2
thus
lim on(x)de =0.

=0 Js<|a|<n

So {¢,}°_, is an approximation of the identity. By the result in Problem B, i * [ converges
uniformly to f if f € €(T).



3. To conclude part 3, we note that for each n € N, ¢, * f is a trigonometric function. Therefore,
part 2 implies that any function in €’(T) can be approximated by trigonometric functions; thus
P(T) is dense in €(T). o



