Exercise Problem Sets 8

Apr. 07. 2023
Problem 1. Let f be a 2m-periodic Lipchitz function. Show that for n > 2,
1+ 2logn
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n
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n
Inequality (@) provides the rate of convergence of the Fourier series to Lipschitz functions. What

is the rate of convergence if f € €%*(T)?
Hint: For (@), apply the estimate
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in the following inequality:

|F(2) = Fus + () f f j\f (2 — )| Fua() dy

with § = . For (@), use (8.2.7) in the lecture note and note that
n
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Proof. Recall that the Fejér kernel F), is given by
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if 2k |keZY,
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Therefore, by the fact that sin|z| > g|x] for |x| < g, we find that
m
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Bythefactthatf F,_1(2)dz =0 for all n. > 2, we find that if n > 2 and 0 < § < ,
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Let 6 = =. Then
n
’ | flgoncr

J n ’
L [f(@) = fz —y)] Far(y) dy‘ < L | fleoremlyl- o dy = ——— L ydy

_lfleorm 7wl flleorc
2m n? 2n )
Moreover,
s
[ @ te-nlrama)< [ ifloll 5 d
ISlylsm s<ly|<rn ny
7|.f|goi(r) logn

_ T fllgorem J” L 7. fllg0.1(my log © —
n s Y n 0 n

The two inequalities above implies (@)
For the validity of (@), by the fact that
inf 1f = pleo <If = Fux fleo

pePy (T
we conclude from (8.2.7) in the lecture note and (@) that
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and the desired inequality follows from the fact that
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If fe €% (T) for some 0 < < 1, then
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The estimate above, together with (8.2.7) in the lecture note, shows that
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Problem 2. In this problem, we are concerned with the following

Theorem 0.1 (Bernstein). Suppose that f is a 2m-periodic function such that for some constant C
and o € (0, 1),
inf — <Cn™“
int 7 = plo < Cn
for alln e N. Then f e €%*(T).

Complete the following to prove the theorem.

1. Show that
Pl <nlplee Vpe Pn(T). (0.3)

2. Choose p, € Z,(T) such that | f—p,|e < 2Cn~* for n € N. Define gy = p1, and ¢,, = pan —pan—1

for n e N.
o0
(a) Show that > ¢, = f and the convergence is uniform.
n=0
(b) Show that

|gn(7) — gu(y)] < 6CN2" |z —y| and |gu(z) — gu(y)| < 12027

(c) For any z,y € T with |z — y| < 1, choose m € N such that 27 < |x — y| < 2'™™. Then

use the inequality

|f(x) = f(y)] < 2 00 () = )] + D] |an(2) = aa(v)]

to show that |f(z) — f(y)| < B|z — y|* for some constant B > 0.

Hint of 1: Suppose the contrary that there exists p € &, (T) such that |p’| > n|p|«. By rescaling

p and relabeling points in T if necessary, without loss of generality we can assume that

[p"lc >m, [Pl <1, and  p(0) = [p'[w.

%, %] such that sin(ny) = —p(0), and define r(z) = sinn(z — ) — p(x). Show that
r has at least 2n + 2 distinct zeros in [a_,, a,] = [—7 4+ 7 + 21,7r + v+ 21} by showing that r
n n

Choose vy € [

. 1 .
has at least one zero in (o, agy1), where ag, = v + I(k + 5) for each |k| < n, while r has at least
n

3 distinct zeros in (o, asyq) if 0 € (ag, agy1) (in fact, s = —1). On the other hand, the fact that
r e Z,(T) implies that r has at most 2n distinct zeros in T unless r is the zero function which leads

to a contradiction.

Proof. 1. Suppose the contrary that there is a trigonometric polynomial p of degree n such that

[P0 > nlpleo -



By rescaling p and relabeling points in T if necessary, without loss of generality we can assume
that

[p"lec >, ple <1, and p'(0) = [p]lo -

Choose v € [—%, %] such that sin(ny) = —p(0) (and cos(ny) > 0), and define

r(z) =sinn(x — ) — p(x).

1
Then r € &,(T). Let ap = v+ z(k‘ + 5) Note that «ay # 0 for all k € Z since if ay, = 0 for
n
some k, then by the fact that [|p[ls, < 1,

sinny = —sin [7(k + %)} = (—=1)" % —p(0),

a contradiction.

Note that {ay}7__, forms a partition of [o_,, ] = [—7 + 7+ 21,7r +v+ 21} which is an
n n

interval of length 2. Since |p(ay)| < 1 and r(ay) = (—1)* — p(as), the sign of 7(ay) is (—=1).

By the intermediate value theorem, for each |k| < n there exists S € (ag,ary1) such that
™ s .

o 2—}, we must have 0 € (a_1,ap); thus sinn(x — )

n n

increases from —1 = sinn(a_; — ) to 1 = sinn(ag — ) in (a_1, ), rla_y) < 0 < r(ap).

r(Br) = 0. Moreover, since 7y € [—

Moreover, r(0) = 0, and r'(0) = ncosny — p’(0) < 0. Therefore, there exist two small positive
numbers €; and €, such that r(—e;) > 0 and 7(e2) < 0. As a consequence, r has at least 3 zeros

in (a_1, ap). This shows that r has at least 2n + 2 zeros in [ — 7+ + 21, T+ + 21}
n n

Now, by the fact that r € &2,,(T), r has at most 2n distinct zeros in (a_,, a,,) unless r is a zero

function. Therefore, r = 0 which implies that
p(z) =sinn(x — ) VzeT.
The identity above then contradicts to the assumption that p’(0) = ||p’[ > n.

. Choose p,, € Z,(T) such that ||f — pullec < 2Cn~* for n € N. We remark here that this implies
that € L*(T); that is, sup ]f(m)] < 0. Define gy = pi1, and ¢, = pan — pan—1 for n € N. Note
zeT

that .
> () = Jim pn(a) = (0 (©

and for n € N,
Ianlloo < [P2r — flloo + If = pon-i]oe < 2027 4202~ ("D < gC27

so that the Weierstrass M-test implies that the convergence in (¢) is uniform. Moreover, the

mean value theorem and (@) imply that

|02(2) = au ()] < lanllclz =yl < 2°[ullcla — y| < 6Cn2" D]z —y.



On the other hand, we also have

|40(2) = 42 (9)] < 2]l < 120277

Therefore, for all m € N,

F@ = 10 < 3 |an@) = @] + 3 Janle) = 0u®)
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For fixed z,y € T with |z — y| < 1, choose m € N such that 2™ < |z — y| < 27!, Then

2m(1—a) -1 —mao
~ )l <ecermi T o0
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where B = 120[21_a — + 1= 2_04}; hence Hf“%ova(ﬂr) < B+ 3| f]e-



