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Problem 1. Let f P C (T) and t pfku8
k=´8 be the Fourier coefficients defined by pfk =

1

2π

ż π

´π
f(x)e´ikx dx.

Show that if
8
ř

k=´8

| pfk
ˇ

ˇ ă 8, then the Fourier series of f converges uniformly to f on R.

Proof. Let Mk = | pfk| and
8
ř

k=´8

| pfk| = M . Then
ˇ

ˇsn(f, x)
ˇ

ˇ ď M for all n P N and x P R. Moreover,

ˇ

ˇ pfke
ikx

ˇ

ˇ ď Mk @x P R and
8
ÿ

k=´8

Mk = M ă 8 .

Therefore, the Weierstrass M -test implies that the Fourier series converges uniformly on R. Suppose
that the Fourier series converges uniformly to g. Then

ˇ

ˇg(x)
ˇ

ˇ ď M for all x P R; thus Problem 9
in Exercise 4 implies that the Cesàro mean of tsk(f, ¨)u8

k=1 converges uniformly to g on R. Since
f P C (T), the Cesàro mean of the Fourier series of f converges uniformly to f on R; thus f = g. ˝

Problem 2. Compute the Fourier series of the function f : (´π, π) Ñ R defined by

f(x) =

#

0 ´π ă x ă 0 ,

π ´ x 0 ď x ă π ,

and show that
1 +

1

32
+

1

52
+ ¨ ¨ ¨ =

8
ÿ

k=1

1

(2k ´ 1)2
=

π2

8
. (0.1)

Also use the Fourier series of the function y = x2

s(x2, x) =
π2

3
+ 4

8
ÿ

k=1

(´1)k

k2
cos kx

to conclude (0.1).

Solution. We compute the Fourier coefficients as follows. For k P N,

sk =
1

π

ż π

0

(π ´ x) sin(kx) dx =
1

π

[´(π ´ x) cos(kx)
k

ˇ

ˇ

ˇ

x=π

x=0
´

1

k

ż π

0

cos(kx) dx
]
=

1

k

and

ck =
1

π

ż π

0

(π ´ x) cos(kx) dx =
1

π

[(π ´ x) sin(kx)
k

ˇ

ˇ

ˇ

x=π

x=0
+

1

k

ż π

0

sin(kx) dx
]

=
´ cos(kx)

k2π

ˇ

ˇ

ˇ

x=π

x=0
=

1 ´ (´1)k

k2π
,

while
c0 =

1

π

ż π

0

(π ´ x) dx =
π

2
.



Therefore, by the fact that lim
xÑ0´

f(x) = 0 and lim
xÑ0+

f(x) = π,

π

4
+

8
ÿ

k=1

(1 ´ (´1)k

k2π
cos(kx) + 1

k
sin(kx)

)
=

$

’

’

&

’

’

%

0 if ´π ď x ă 0 ,

π ´ x if 0 ă x ď π ,
π

2
if x = 0 .

We note that the case x = 0 implies that

π

2
=

π

4
+

8
ÿ

k=1

1 ´ (´1)k

k2π

which shows the identity

1 +
1

32
+

1

52
+ ¨ ¨ ¨ =

8
ÿ

k=1

1

(2k ´ 1)2
=

π2

8
.

We also note that the identity above can be obtained by
8
ÿ

k=1

1

k2
=

8
ÿ

k=1

1

(2k ´ 1)2
+

8
ÿ

k=1

1

(2k)2
=

8
ÿ

k=1

1

(2k ´ 1)2
+

1

4

8
ÿ

k=1

1

k2

so that
8
ÿ

k=1

1

(2k ´ 1)2
=

3

4

8
ÿ

k=1

1

k2
=

3

4
¨
π2

6
=

π2

8
. ˝

Problem 3. The proof of Theorem 8.25 in the lecture note only establishes the validity of the
theorem for the case L = π. Use this fact to show that the conclusion also holds for general L ą 0.

Proof. Suppose that the theorem holds for the case L = π. Let f : R Ñ R be 2L-periodic piecewise
Hölder continuous with exponent α P (0, 1]. Define g : R Ñ R by g(x) = f

(Lx
π

) (
or equivalently,

f(x) = g
(πx
L

))
. Then g is 2π-periodic piecewise Hölder continuous exponent α P (0, 1], and

sn(g, x) = sn(f,
Lx

π

)
and sn(f, x) = sn

(
g,

πx

L

)
.

Therefore, by the fact that lim
xÑx˘

0

h(cx) = lim
yÑ(cx0)˘

h(x) if c ą 0,

lim
nÑ8

sn(f, x0) = lim
nÑ8

sn
(
g,

πx0
L

)
=

1

2

[
lim

yÑ(
πx0
L

)+
g(y) + lim

yÑ(
πx0
L

)´
g(y)

]
=

1

2

[
lim
xÑx+

0

g
(πx
L

)
+ lim

xÑx´
0

g
(πx
L

)]
=

1

2

[
lim
xÑx+

0

f(x) + lim
xÑx´

0

f(x)
]

=
f(x+

0 ) + f(x´
0 )

2
.

Moreover, if x0 is a jump discontinuity of f , then πx0
L

is a jump discontinuity of g so that

lim
nÑ8

sn
(
f, x0 +

L

n

)
= lim

nÑ8
sn
(
g,

π

L

(
x0 +

L

n

))
= lim

nÑ8
sn
(
g,

πx0
L

+
π

n

)
= lim

yÑ(
πx0
L

)+
g(y) + c

[
lim

yÑ(
πx0
L

)+
g(y) ´ lim

yÑ(
πx0
L

)´
g(y)

]
= lim

xÑx+
0

g
(πx
L

)
+ c

[
lim
xÑx+

0

g
(πx
L

)
´ lim

xÑx´
0

g
(πx
L

)]
= f(x+

0 ) + ca .



Similarly, lim
nÑ8

sn
(
f, x0 +

L

n

)
= f(x´

0 ) ´ ca. ˝

Problem 4. For a given function f : [0, L] Ñ R, the even extension of f is a function sf : [´L,L] Ñ R
such that

sf(x) = f(x) if x P [0, L) and sf(x) = f(´x)if x P [´L, 0) .

1. Let f : [0, L] Ñ R be an integrable function. The cosine series of f is the Fourier series of the
even extension of f . Find the cosine series of f .

2. Suppose in addition f : [0, L] Ñ R is piecewise Hölder continuous with exponent α P (0, 1].

Show that the cosine series of f at x0 P (0, L) converges to f(x+0 ) + f(x´
0 )

2
.

Proof. 1. Let sf be the even extension of f , and tcku8
k=0, tsku8

k=1 be the Fourier coefficients of sf .
Then by the fact that sf is even, sk = 0 for all k P N. Moreover,

ck =
1

L

ż L

´L

sf(x) cos kπx
L

dx =
1

L

ż L

0

f(x) cos kπx
L

dx+
1

L

ż 0

´L

f(´x) cos kπx
L

dx

=
1

L

ż L

0

f(x) cos kπx
L

dx+
1

L

ż 0

L

f(x) cos kπ(´x)

L
d(´x)

=
2

L

ż L

0

f(x) cos kπx
L

dx .

Therefore, the cosine series of f is

s( sf, x) =
1

L

ż L

0

f(x) dx+
2

L

8
ÿ

k=1

( ż L

0

f(y) cos kπy
L

dy
)

cos kπx
L

.

2. If f is piecewise Hölder continuous with exponent α P (0, 1], then the odd extension sf of f is
also piecewise Hölder continuous with exponent α P (0, 1]; thus

s( sf, x0) =
sf(x+

0 ) +
sf(x´

0 )

2
=

f(x+
0 ) + f(x´

0 )

2

which shows that the cosine series of f at x0 P (0, L) converges to f(x+0 ) + f(x´
0 )

2
. ˝

Problem 5. For a given function f : [0, L] Ñ R, the odd extension of f is a function sf : [´L,L] Ñ R
such that

sf(x) = f(x) if x P [0, L) and sf(x) = ´f(´x)if x P [´L, 0) .

1. Let f : [0, L] Ñ R be an integrable function. The sine series of f is the Fourier series of the
odd extension of f . Find the sine series of f .

2. Suppose in addition f : [0, L] Ñ R is piecewise Hölder continuous with exponent α P (0, 1].

Show that the sine series of f at x0 P (0, L) converges to f(x+0 ) + f(x´
0 )

2
.



Proof. 1. Let sf be the odd extension of f , and tcku8
k=0, tsku8

k=1 be the Fourier coefficients of sf . Then
by the fact that sf is odd, ck = 0 for all k P N Y t0u. Moreover,

sk =
1

L

ż L

´L

sf(x) sin kπx

L
dx =

1

L

ż L

0

f(x) sin kπx

L
dx ´

1

L

ż 0

´L

f(´x) sin kπx

L
dx

=
1

L

ż L

0

f(x) sin kπx

L
dx ´

1

L

ż 0

L

f(x) sin kπ(´x)

L
d(´x)

=
2

L

ż L

0

f(x) sin kπx

L
dx .

Therefore, the sine series of f is

s( sf, x) =
2

L

8
ÿ

k=1

( ż L

0

f(y) sin kπy

L
dy

)
sin kπx

L
.

2. If f is piecewise Hölder continuous with exponent α P (0, 1], then the odd extension sf of f is
also piecewise Hölder continuous with exponent α P (0, 1]; thus

s( sf, x0) =
sf(x+

0 ) +
sf(x´

0 )

2
=

f(x+
0 ) + f(x´

0 )

2

which shows that the sine series of f at x0 P (0, L) converges to f(x+0 ) + f(x´
0 )

2
. ˝

Problem 6. Let f be the sinc function defined by

f(x) =

$

&

%

sinx

x
if x ‰ 0 ,

1 if x = 0 .

Show that
f(x) =

b0
2
+

8
ÿ

k=1

bn cos(nx) , @x P [´π, π] ,

where bn =
1

π

ż (n+1)π

(n´1)π

sinx

x
dx . Use this result to compute

ż 8

0

sinx

x
dx .

Proof. Since f is an even function, the Fourier coefficients tsku8
k=1 is the zero sequence; that is,

sn(f, x) =
c0
2
+

n
ÿ

k=1

ck cos kx ,

where

ck =
1

π

ż π

´π

sinx

x
cos kx dx =

1

π

ż π

0

2 sinx cos kx
x

dx =
1

π

ż π

0

sin(k + 1)x ´ sin(k ´ 1)x

x
dx

=
1

π

[ ż π

0

sin(k + 1)

x
dx ´

ż π

0

sin(k ´ 1)x

x
dx

]
=

1

π

[ ż (k+1)π

0

sin y

y
dy ´

ż (k´1)π

0

sin y

y
y

=
1

π

ż (k+1)π

(k´1)π

sinx

x
dx ” bk .



Since f 1(x) =
x cosx ´ sinx

x2
and lim

xÑ0
f 1(x) = 0, we find that f 1 is bounded; thus f is Lipschitz

continuous. Therefore, the Fourier series of f converges uniformly to f on T; thus

f(x) =
b0
2
+

8
ÿ

k=1

bk cos kx @x P R

and the convergence is uniform. In particular, at x = 0 and x = π,

1 =
b0
2
+

8
ÿ

k=1

bk and 0 =
b0
2
+

8
ÿ

k=1

(´1)kbk .

Therefore,
1

2
=

8
ÿ

k=0

b2k+1 =
1

π

8
ÿ

k=0

ż (2k+2)π

2kπ

sinx

x
dx =

1

π

ż 8

0

sinx

x
dx

which shows that
ż π

´π

sinx

x
dx =

π

2
. ˝


