Exercise Problem Sets 10

Apr. 21. 2023
Problem 1. Use the Fourier series of the function f : (—m,7) — R defined by
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Solution. From Problem 2 of Exercise 9, we find that
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the Parseval identity implies that
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Problem 2. Use the Fourier series of the function f : [—7, 7] — R given by f(z) = z* — 7%z to find

the values of Z ( and Z 6

Solution. Let {c,}i, and {s;}{_, be the Fourier coefficients of f. Note that f is an odd function;

thus ¢, = 0 for all £ € N. On the other hand, for £ € N we have
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Therefore, the computations above show that
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so that the Fourier series of f is given by
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Therefore, by the fact that h is Holder continuous, by Theorem 8.17 in the lecture note we have
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Moreover, the Parseval identity implies that
1 o T
52 |sk]? = J (2% — ) dw ;
thus
| g ™ 76
I 3.2 2d - 6_2 42d:—.
g x; 1447r (x mx)* dr 7 ), (x m2at + ri0?) do O

Problem 3. For each n € Z, define the Bessel functions J,(z) through the Fourier series by
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Compute Y. |J,(x)|* for z € R.

n=—au



Proof. For a fixed x € R, by treating the function y = 5! as a 27-periodic function of ¢, we find

that the Fourier series of the function is given by
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where {J,,(x)}2__ . is the Fourier coefficients given by
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By the Parseval identity,
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Problem 4. Let f : [0, L] — R be a square integrable function.
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1. Suppose that %0 + > ¢ cos %a; is the cosine series of f. Find Y] ¢f in terms of integrals of f
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and f2.
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2. Suppose that kZ s sin % is the sine series of f. Find k;21 s7 in terms of integral of f2.
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Proof. 1. Let f.:[—L, L] — R be the even extension of f. Then
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In particular, ¢ = — f6 x)dr =~ f x) dx. By the Parseval identity,
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Therefore,
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2. Let f,: [=L, L] — R be the odd extension of f. Then

o0
kmx

s(fo,x) = 2 Sy sin -

where

k 2 (" k
J folz sinﬂdx—LJ;f()sm%dx



By the Parseval identity;,
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Problem 5. Expand the function cosz as a sine series on the interval (0,7). Use the result to

compute
o 2
Z n
2 _1)2°
— (4n? — 1)
How about expanding cosz as a sine series on the interval (0, 7/2)?

Problem 6. This problem contributes to another proof of showing that the Fourier series of f

converges uniformly to f on R if f e €%%(T) for % < a < 1. Complete the following.

1. Let f: R — R be 2w-periodic such that f is Riemann integrable on [—m, 7|. Show that
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2. Let f: R — R be 2m-periodic such that f is Riemann integrable on [—7, 7]. Show that
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Therefore, if f € €%*(T), the Fourier coefficients fk satisfies
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3. Let f e %%(T), and p € N. Show that
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4. Show that if f € €%%(T) for some % <a<1,then > |fx| < o0; thus Problem 1 of Exercise
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9 implies that the Fourier series of f converges uniformly to f on R.



Proof. 1. By substitution of variables,
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so that the periodicity of f and the function y = e~*** implies that
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and we then conclude that
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2. For h # 0, let g(z) = f(x + h) — f(z — h). Then by substitution of variables,
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so that the periodicity of f and the function y = e~ implies that
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Therefore, the Parseval identity shows that
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If in addition f € €%(T), then the identity above implies that
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3. For each p € N, letting h = 37T 0 (@) we find that
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Since for 2P~ < |k| < 27, sin? 2p_7:1 > 3 the inequality above implies that
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4. Suppose that f € €%%(T) for some a € (0.5, 1]. For each p € N, by the Cauchy inequality and

the result in part 3 we obtain that
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Therefore, by the fact that )| < o (since a > 5), we conclude that
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thus Problem 1 of Exercise 9 implies that the Fourier series of f converges uniformly to f on

R if f e €%(T) for some « € (0.5, 1]. o



