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Problem 1. Show that the Fourier transform of a Schwartz function is also a Schwartz function.

Proof. Let f P S (Rn), N P NYt0u be a given non-negative integer, and α = (α1, ¨ ¨ ¨ , αn) be a given
multi-index. The goal is to show that there exists a constant C = CN,α such that

|ξ|N
ˇ

ˇDα
pf(ξ)

ˇ

ˇ ď CN,α @ ξ P Rn .

Note that |ξ|N ď 1 + |ξ|2N for all ξ P Rn; thus it suffices to show that there exists CN,α such that

(1 + |ξ|2N)
ˇ

ˇDα
pf(ξ)

ˇ

ˇ ď CN,α @ ξ P Rn .

Using the notation xα = xα1
1 xα2

2 ¨ ¨ ¨ xαn
n for multi-index, by Corollary 9.10 and 9.12 in the lecture note

we find that

(1 + |ξ|2N)
ˇ

ˇDα
pf(ξ)

ˇ

ˇ = (1 + |ξ|2N)
ˇ

ˇ

ˇ
Fx

[
xαf(x)

]ˇ
ˇ

ˇ
=
ˇ

ˇ

ˇ
F

[
(1 + ∆x)

N
[
xαf(x)

]]
(ξ)

ˇ

ˇ

ˇ
,

where ∆x =
n
ř

k=1

B 2

Bx2k
=

B 2

Bx21
+

B 2

Bx22
+ ¨ ¨ ¨ +

B 2

Bx2n
. By Lipschitz rule, we find that

(1 + ∆x)
N
[
xαf(x)

]
=

2N
ÿ

|β|=0

PN,α,β(x)D
βf(x)

for some polynomials Pβ. For each multi-index β, by the fact that Dβf P S (Rn), PβD
βf P S (Rn);

thus Proposition 9.4 and Lemma 9.8 imply that for each multi-index β there exists CN,α,β such that
ˇ

ˇ

ˇ
Fx

[
Pβ(x)D

βf(x)
]
(ξ)

ˇ

ˇ

ˇ
ď CN,α,β @ ξ P Rn .

Therefore, for all ξ P Rn,

|ξ|N
ˇ

ˇDα
pf(ξ)

ˇ

ˇ ď

2N
ÿ

|β|=0

ˇ

ˇ

ˇ
Fx

[
Pβ(x)D

βf(x)
]
(ξ)

ˇ

ˇ

ˇ
ď

2N
ÿ

|β|=0

CN,α,β ” CN,α . ˝

Problem 2. Suppose that f : R Ñ C is continuous, absolutely integrable, and pf(ξ) =
ln(1 + ξ2)

ξ2
.

Find f(0) and
ż 8

´8

f(x) dx.

Solution. By the Fourier inversion formula,

f(0) =
1

?
2π

ż

R

pf(ξ)eiξ¨0 dξ =
1

?
2π

ż

R

ln(1 + ξ2)

ξ2
dξ

=
1

?
2π

[´ ln(1 + ξ2)

ξ

ˇ

ˇ

ˇ

ξ=8

ξ=´8
+

ż

R

1

ξ

2ξ

1 + ξ2
dξ
]

=
2

?
2π

ż

R

1

1 + ξ2
dξ =

c

2

π
arctan ξ

ˇ

ˇ

ˇ

ξ=8

ξ=´8
=

c

2

π
¨ π =

?
2π .

Moreover, by the definition and the property of the Fourier transform,
ż 8

´8

f(x) dx = lim
ξÑ0

?
2π pf(ξ) =

?
2π lim

tÑ0+

ln(1 + t)

t
=

?
2π . ˝



Problem 3. 1. Let f : R Ñ C be a continuous integrable function such that pf is also integrable.
Show that

f(x) =
1

2π

ż

R

( ż
R
f(y) cos[(x ´ y)ξ] dy

)
dξ @x P R .

2. If in addition to condition in 1, f is an even function. Show that

f(x) =
2

π

ż 8

0

( ż 8

0

f(y) cos(xξ) cos(yξ) dy
)
dξ .

3. If in addition to condition in 1, f is an odd function. Show that

f(x) =
2

π

ż 8

0

( ż 8

0

f(y) sin(xξ) sin(yξ) dy
)
dξ .

4. For a function g : [0,8) Ñ C satisfying
ż 8

0

ˇ

ˇg(x)
ˇ

ˇ dx ă 8, the Fourier cosine transform and the

Fourier sine transform of g, denoted by Fcos[g] and Fsin[g] respectively, are functions defined
by

Fcos[g](ξ) =

c

2

π

ż 8

0

g(y) cos(yξ) dy and Fsin[g](ξ) =

c

2

π

ż 8

0

g(y) sin(yξ) dy .

(a) Show that if Fcos[g] P L1(R), then

g(x) = Fcos
[
Fcos[g]

]
(x) whenever x P [0,8) and g is continuous at x,

or equivalently,
g(x) =

2

π

ż 8

0

( ż 8

0

g(y) cos(yξ) dy
)

cos(xξ) dξ

whenever x P [0,8) and g is continuous at x.

(b) Show that if Fsin[g] P L1(R), then

g(x) = Fsin
[
Fsin[g]

]
(x) whenever x P [0,8) and g is continuous at x,

or equivalently,
g(x) =

2

π

ż 8

0

( ż 8

0

g(y) sin(yξ) dy
)

sin(xξ) dξ

whenever x P (0,8) and g is continuous at x.

Hint of 4: Consider the even or odd extension of g, and apply conclusions in 2 and 3.

Proof. 1. Let f be a continuous integrable function such that pf is also integrable. Then qf is also
integrable; thus the Fourier inversion formula implies that

f(x) =
q

pf(x) =
1

2π

ż

R

( ż
R
f(y)e´iyξ dy

)
eixξ dξ =

1

2π

ż

R

( ż
R
f(y)ei(x´y)ξ dy

)
dξ

and

f(x) =
p

qf(x) =
1

2π

ż

R

( ż
R
f(y)eiyξ dy

)
e´ixξ dξ =

1

2π

ż

R

( ż
R
f(y)e´i(x´y)ξ dy

)
dξ



whenever f is continuous at x. Therefore, if f is continuous at x, then

f(x) =
1

2

[ 1

2π

ż

R

( ż
R
f(y)ei(x´y)ξ dy

)
dξ +

1

2π

ż

R

( ż
R
f(y)e´i(x´y)ξ dy

)
dξ
]

=
1

2π

ż

R

( ż
R
f(y)

ei(x´y)ξ + e´i(x´y)ξ

2
dy

)
dξ

=
1

2π

ż

R

( ż
R
f(y) cos[(x ´ y)ξ] dy

)
dξ .

We note that by the sum and difference of angles identities, the identity above implies that

f(x) =
1

2π

ż

R

( ż
R
f(y)

[
cos(xξ) cos(yξ) + sin(xξ) sin(yξ)

]
dy

)
dξ . (0.1)

2. If f is an even function, then
ż

R
f(y) sin(xξ) sin(yξ) dy = 0; thus (0.1) shows that if f is

continuous at x,

f(x) =
1

2π

ż

R

( ż
R
f(y) cos(xξ) cos(yξ) dy

)
dξ =

1

2π

ż

R

(
2

ż 8

0

f(y) cos(yξ) dy
)

cos(xξ) dξ .

Note that the inner integral is an even function of ξ, so

f(x) =
2

2π

ż 8

0

(
2

ż 8

0

f(y) cos(yξ) dy
)

cos(xξ) dξ =
2

π

ż 8

0

( ż 8

0

f(y) cos(yξ) dy
)

cos(xξ) dξ .

3. If f is an odd function, then
ż

R
f(y) cos(xξ) cos(yξ) dy = 0; thus (0.1) shows that if f is

continuous at x,

f(x) =
1

2π

ż

R

( ż
R
f(y) sin(xξ) sin(yξ) dy

)
dξ =

1

2π

ż

R

(
2

ż 8

0

f(y) sin(yξ) dy
)

sin(xξ) dξ .

Note that the inner integral is an odd function of ξ, so

f(x) =
2

2π

ż 8

0

(
2

ż 8

0

f(y) sin(yξ) dy
)

sin(xξ) dξ =
2

π

ż 8

0

( ż 8

0

f(y) sin(yξ) dy
)

sin(xξ) dξ .

4. Suppose that g : [0,8) Ñ C is integrable.

(a) Let f : R Ñ C be defined by

f(x) =

$

’

&

’

%

g(x) if x ą 0 ,

´g(´x) if x ă 0 ,

0 if x = 0 .

Then f is an odd function and is integrable on R. Moreover,

pf(ξ) =
1

?
2π

ż

R
f(y)e´iyξ dy =

1
?
2π

ż

R
f(y)

[
cos(yξ) ´ i sin(yξ)

]
dy

=
1

?
2π

ż

R
f(y) cos(yξ) dy ´ i

1
?
2π

ż

R
f(y) sin(yξ) dy .



By the definition of f ,
ż

R
f(y) cos(yξ) dy =

ż 8

0

f(y) cos(yξ) dy +
ż 0

´8

f(y) cos(yξ) dy

=

ż 8

0

g(y) cos(yξ) dy ´

ż 0

´8

g(´y) cos(y xi) dy

=

ż 8

0

g(y) cos(yξ) dy ´

ż 0

8

g(y) cos(´yξ) d(´y) = 0

and
ż

R
f(y) sin(yξ) dy =

ż 8

0

f(y) sin(yξ) dy +
ż 0

´8

f(y) sin(yξ) dy

=

ż 8

0

g(y) sin(yξ) dy ´

ż 0

´8

g(´y) sin(y xi) dy

=

ż 8

0

g(y) sin(yξ) dy ´

ż 0

8

g(y) sin(´yξ) d(´y)

= 2

ż 8

0

g(y) sin(yξ) dy =
?
2πFsin[g](ξ) ;

thus pf = ´iFsin[g] which implies that pf P L1(R). On the other hand, qf(ξ) = pf(´ξ) =

iFsin[g](ξ); thus the Fourier inversion formula implies that

Fsin
[
Fsin[g]

]
(x) = ´iFsin

[
iFsin[g]

]
(x) =

p

qf(x) = f(x)

whenever f is continuous at x. In particular, if x P (0,8) and g is continuous at x, then
f is continuous at x and f(x) = g(x) which imply that

Fsin
[
Fsin[g]

]
(x) = g(x) whenever x P (0,8) and g is continuous at x. ˝

Problem 4. A vector-valued function u = (u1, u2, ¨ ¨ ¨ , un) : Rn Ñ Rn is called a Schwartz function,
still denoted by u P S (Rn), if uj P S (Rn) for all 1 ď j ď n. Show the Korn inequality

n
ÿ

i,j=1

›

›ϵij(u)
›

›

2

L2(Rn)
ě

1

2

n
ÿ

i,j=1

›

›

›

Buj
Bxi

›

›

›

2

L2(Rn)
@ u P S (Rn) ,

where ϵij(u) =
1

2

( Bui
Bxj

+
Buj
Bxi

)
is the symmetric part of Du.

Hint: Use the Plancherel formula.

Proof. By the Plancherel formula,
›

›ϵij(u)
›

›

2

L2(Rn)
=

1

4

n
ÿ

i,j=1

ż

Rn

[
ξiξipuj(ξ)puj(ξ) + ξjξjpui(ξ)pui(ξ) + ξjξipui(ξ)puj(ξ) + +ξjξipui(ξ)puj(ξ)

]
dξ

=
n
ÿ

i=1

ż

Rn

ξ2i |pui(ξ)|
2dξ +

1

4

ÿ

i‰j

ż

Rn

[
ξ2i |puj(ξ)|

2 + ξ2j |pui(ξ)|
2 + 2ξjξipui(ξ)puj(ξ)

]
dξ

ě

n
ÿ

i=1

ż

Rn

ξ2i |pui(ξ)|
2dξ +

1

4

ÿ

i‰j

ż

Rn

[
ξ2i |puj(ξ)|

2 + ξ2j |pui(ξ)|
2 ´ ξ2i |pui(ξ)|

2 ´ ξ2j |puj(ξ)|
2
]
dξ

ě
1

2

n
ÿ

i=1

ż

Rn

ξ2i |pui(ξ)|
2dξ +

1

4

ÿ

i‰j

ż

Rn

[
ξ2i |puj(ξ)|

2 + ξ2j |pui(ξ)|
2
]
dξ



ě
1

2

n
ÿ

i,j=1

ż

Rn

ξ2i |puj(ξ)|
2dξ =

1

2

n
ÿ

i,j=1

›

›

›

Buj
Bxi

›

›

›

2

L2(Rn)
. ˝

Problem 5. Let ϕ : Rn Ñ R be a smooth function with compact support; that is,
␣

x P Rn
ˇ

ˇϕ(x) ‰ 0
(

is bounded. Show that if f P L1
loc(Rn), then the convolution ϕˇ f is smooth and

Dα(ϕˇ f)(x) =
[
(Dαϕ)ˇ f

]
(x) =

ż

Rn

(Dαϕ)(x ´ y)f(y) dy ,

where α = (α1, ¨ ¨ ¨ , αn) be a multi-index.
Note that the standard mollifiers tηεuεą0 are one of such kind of functions, so this problem shows

that ηεˇ f is smooth if f P L1
loc(Rn).

Proof. By Theorem 5.40 in the lecture note, it suffices to show that
B

Bxj

ż

Rn

ϕ(x ´ y)f(y) dy =

ż

Rn

ϕxj
(x ´ y)f(y) dy @x P Rn (0.2)

and the right-hand side is a continuous function (in x). The continuity of the right-hand side function
follows directly from the Dominated Convergence Theorem: If txku8

k=1 is a sequence with limit x

(W.L.O.G. we can assume that |xk ´ x| ă 1 for all k P N) and ϕ is supported inside B(0, R); that is,
␣

z P Rn
ˇ

ˇϕ(z) ‰ 0
(

Ď B(0, R), then the fact that
ˇ

ˇϕxj
(xk ´ y)f(y)

ˇ

ˇ ď M1B(0,R+|x|+1)|f(y)| whenever y P Rn

and the right-hand side functions is integrable on Rn, the Dominated Convergence Theorem implies
that

lim
kÑ8

ż

Rn

ϕxj
(xk ´ y)f(y) dy =

ż

Rn

lim
kÑ8

ϕxj
(xk ´ y)f(y) dy =

ż

Rn

ϕxj
(x ´ y)f(y) dy

which shows that the right-hand side function in (0.2) is continuous (in x).
Let x P Rn be given, and thku8

k=1 be a non-zero sequence converging to 0. W.L.O.G., we assume
that |hk| ă 1 for all k P N. Define

gk(y) =
ϕ(x+ hkej ´ y) ´ ϕ(x ´ y)

hk

f(y) .

By the fact that ϕ has compact support, M ” sup
zPRn

ˇ

ˇϕxj
(z)

ˇ

ˇ ă 8. By the mean value theorem,

ˇ

ˇ

ˇ

ϕ(x+ hkej ´ y) ´ ϕ(x ´ y)

hk

ˇ

ˇ

ˇ
ď M1B(x,R+1)(y)

so that
ˇ

ˇgk(y)
ˇ

ˇ ď M1B(x,R+1)(y)
ˇ

ˇf(y)
ˇ

ˇ @ y P Rn and k P N ,

where again R ą 0 is chosen so that ϕ is supported in B(0, R). Since f P L1
loc(Rn), the function

on the right-hand side of the inequality above is an integrable function. Therefore, the Dominated
Convergence Theorem implies that

lim
kÑ8

ż

Rn

gk(y) dy =

ż

Rn

lim
kÑ8

gk(y) dy =

ż

Rn

ϕxj
(x ´ y)f(y) dy

which shows (0.2). ˝



Problem 6. 1. Let dr denote the dilation operator defined by drf(x) = f
(x
r

)
. Show that

F (drf) = rnd1/rF (f) @ f P S (Rn) . (0.3)

2. In some occasions (especially in engineering applications), the Fourier transform and inverse
Fourier transform of a (Schwartz) function f are defined by

pf(ξ) =

ż

Rn

f(x)e´i2πx¨ξdx and qf(x) =

ż

Rn

f(ξ)ei2πx¨ξdξ .

Show that under this definition, q

pf =
p

qf = f for all f P S (Rn). Note that you can use the
Fourier Inversion Formula that we derive in class.

Proof. Let F denote the Fourier transform operator that we used in class, and p be the Fourier
transform operator in this problem.

1. Let dr denote the dilation operator define by (drf)(x) = f(rx). By the change of variables
formula,

F (drf)(ξ) =
1

?
2π

n

ż

Rn

(drf)(x)e
´ix¨ξ dx =

1
?
2π

n

ż

Rn

f(r´1x)e´ix¨ξ dx

=
1

?
2π

n

ż

Rn

f(y)e´iry¨ξrn dy =
rn

?
2π

n

ż

Rn

f(y)e´iy¨(rξ) dy

= rnF (f)(rξ) = rn
[
d 1

r
F (f)

]
(ξ)

so that (0.3) is established.

2. Replacing f by d1/rf in (0.3) implies that

F (f) = F
(
drd 1

r
f
)
= rnd 1

r
F

(
d 1

r
f
)

@ f P S (Rn) . (˛)

Similarly, F ˚(drf) = rnd 1
r
F ˚(f) so that

F ˚(f) = rnd 1
r
F ˚

(
d 1

r
f
)

@ f P S (Rn) . (˛˛)

Note that

pf(ξ) =

ż

Rn

f(x)e´2πix¨ξ dx =
?
2π

n
F (f)(2πξ) =

?
2π

n[
d 1

2π
F (f)

]
(ξ)

=
1

?
2π

n (2π)
n
[
d 1

2π
F (f)

]
(ξ) =

1
?
2π

nF (d2πf)(ξ)

and
qf(ξ) = pf(´ξ) =

1
?
2π

nF (d2πf)(´ξ) =
1

?
2π

nF ˚(d2πf)(ξ) .

Therefore, (˛) implies that
q

pf(ξ) =
1

?
2π

nF ˚(d2π pf)(ξ) =
1

?
2π

nF ˚
( 1

?
2π

nd2πF (d2πf)
)
(ξ)

= F ˚
(
(2π)´nd2πF (d2πf)

)
(ξ) = F ˚(Ff)(ξ) = f(ξ) .

Similarly, (˛˛) implies that

p

qf(ξ) = F
(
(2π)´nd2πF

˚(d2πf)
)
(ξ) = F (F ˚f)(ξ) = f(ξ) . ˝


