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Chapter 10. Applications
§10.1 Application on Signal Processing

§10.2 Application on Partial Differential Equations
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Chapter 10. Applications

§10.1 Application on Signal Processing

In the study of signal processing, the Fourier transform and the

inverse Fourier transform are often defined by

F&) = | f)e 2 *Edx, f(x) = | f(&)e™™¢de ¥ fe LY(R").

R R

For T e 8(R")’, the Fourier transform of T is defined again by
(Ty=(T.6) VoesR).
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§10.1 Application on Signal Processing

In the study of signal processing, the Fourier transform and the

inverse Fourier transform are often defined by

F&) = | f)e 2 *Edx, f(x) = | f(&)e™™¢de ¥ fe LY(R").

R R

For T e 8(R")’, the Fourier transform of T is defined again by
(Ty=(T.6) VoesR).

We also note that the definitions of the translation, dilation, and
reflection of tempered distributions are independent of the Fourier

transform, and are still defined by
<Th i ¢> = <T7 7—fh¢> ) <d>\ it ¢> = <T7 )‘nd/\*l(b> ) <7-7 ¢> = <T7 (Z>
for all ¢ € S(R™).
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§10.1 Application on Signal Processing

Concerning the convolution, we consider the x convolution operator
(Frg)W)= | Fglx=y)dy= [ Flx—y)el) dy ¥ fge L'R").
Rn

instead of * convolution operators (which is %/\/27rn). The convo-
lution of T and fe 8(R") is defined by

(Txfo)=(T,fx¢)=(T,fx¢p) VoeSR").
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§10.1 Application on Signal Processing

Concerning the convolution, we consider the x convolution operator
(Frg)W)= | Fglx=y)dy= [ Flx—y)el) dy ¥ fge L'R").
Rn

instead of * convolution operators (which is %/\/27rn). The convo-
lution of T and fe 8(R") is defined by

(Txfo)=(T,fx¢)=(T,fx¢p) VoeSR").

Then for all Te §(R"Y,
Q@ T=T=T
@ 7 T(6) = T AT =2y T, T=T

© Txf= Tfand fT = f% T for aII fe §(R"). Moreover, if
S e 8(R")" has the property that S * ¢ € S(R") for all ¢ € R”,
then T S= TS in S(R") for all Te S(R")'.
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§10.1 Application on Signal Processing

Moreover,
O 5 =25=1in8[R"Y, and 54(¢) = 10(&) = 6_p = 7_pd =
e 2mh< in $(R™Y for all he R™.
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Chapter 10. Applications

§10.1 Application on Signal Processing

Moreover,
O 5 =25=1in8[R"Y, and 54(¢) = 10(&) = 6_p = 7_pd =
e 2mh< in $(R™Y for all he R™.
@ By Euler’s identity,

o —_ —

cos(2mwx) (€) = %(@J +6_0), sin(2rox)(€) = ~(bw — 6_0).
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§10.1 Application on Signal Processing

Moreover,
O 5 =25=1in8[R"Y, and 54(¢) = 10(&) = 6_p = 7_pd =
e 2mh< in $(R™Y for all he R™.
@ By Euler’s identity,

o —_

cos@ran)(€) = 5(8 +5-), SINTWX)(E) = 7:(0 — 00)

Q@ d%0=20,and 0, % dp = 0,1p for all a, be R".
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§10.1 Application on Signal Processing

Moreover,
O 5 =25=1in8[R"Y, and 54(¢) = 10(&) = 6_p = 7_pd =
e 2mh< in $(R™Y for all he R™.
@ By Euler’s identity,

o —_

cos@ran)(€) = 5(8 +5-), SINTWX)(E) = 7:(0 — 00)

Q@ d%0=20,and 0, % dp = 0,1p for all a, be R".
Q dxop=¢and i, % ¢=r1,0 forall p € S(R").
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Chapter 10. Applications

§10.1 Application on Signal Processing

Moreover,
O 5 =25=1in8[R"Y, and 54(¢) = 10(&) = 6_p = 7_pd =
e 2mh< in $(R™Y for all he R™.
@ By Euler’s identity,

o —_

cos(2mwx) (€) = %(@J 460, sin(2rwx)(€) = % (60— 6_0).
Q@ d%0=20,and 0, % dp = 0,1p for all a, be R".
Q Ixd=¢and i, * ¢ =7,0 for all ¢ € S(R").
© Re-define the rect function IT : R — R by
1 if 1/2
M(x) = | x| <1/2,
0 if x| >1/2.

Then ﬁ(f) = TI(¢) = sinc(¢), where sinc is the normalized

sinc function.
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§10.1 Application on Signal Processing

O Let A: R — R be the triangle function define by

1—|x| if|x] <1,
Alx) = .
0 if x| >1.

Then by the fact that A is an even function, if £ # 0,

- 1
A(§) = QL (1 — x) cos(2mx€) dx

B sin(27x§) =1 L sin(27x¢€)
—2[<1‘X>zngzo+f0 e ¥
_ 1—cos(2m€)  sin*m¢
o 27.‘.252 - 7.‘.252 2

while K(O) =1

Ching-hsiao Arthur Cheng it .5 % &35 %% 11 MA2050-*



Chapter 10. Applications

§10.1 Application on Signal Processing

O Let A: R — R be the triangle function define by

1—|x| if|x] <1,
Alx) = .
0 if x| >1.

Then by the fact that A is an even function, if £ # 0,

- 1
A(§) = QL (1 — x) cos(2mx€) dx

B sin(27x§) =1 L sin(27x¢€)
—2[<1‘X>zngzo+f0 e ¥
_ 1—cos(2m€)  sin*m¢

- 27.‘.252 _ 7.‘.252 9

while K(O) = 1. Therefore, K(f) = sinc?(¢). Using the prop-
erty of convolution, we have II % II = A.
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§10.1 Application on Signal Processing

When a continuous function, x(t), is sampled at a constant rate F;
samples per second (11 & §; Fs =k 353 P~k ) , there is always an
unlimited number of other continuous functions that fit the same
set of samples;
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Chapter 10. Applications

§10.1 Application on Signal Processing

When a continuous function, x(t), is sampled at a constant rate F;
samples per second (11 & §; Fs =k 353 P~k ) , there is always an
unlimited number of other continuous functions that fit the same
set of samples; however, only one of them is bandlimited to F/2
cycles per second (hertz), which means that its Fourier transform,
x(f), is 0 for all |f| = Fs/2.
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Chapter 10. Applications

§10.1 Application on Signal Processing

When a continuous function, x(t), is sampled at a constant rate F;
samples per second (11 & §; Fs =k 353 P~k ) , there is always an
unlimited number of other continuous functions that fit the same
set of samples; however, only one of them is bandlimited to F/2
cycles per second (hertz), which means that its Fourier transform,
x(f), is 0 for all |f| = Fs/2.

Definition

Let f: R — R be a function. fis said to be a bandlimited function

~

if spt(f) is bounded. The bandwidth of a bandlimited function f

~

is the number supspt(f). fis said to be timelimited if spt(f) is
bounded.
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§10.1 Application on Signal Processing

When a continuous function, x(t), is sampled at a constant rate F;
samples per second (11 & §; Fs =k 353 P~k ) , there is always an
unlimited number of other continuous functions that fit the same
set of samples; however, only one of them is bandlimited to F/2
cycles per second (hertz), which means that its Fourier transform,
x(f), is 0 for all |f| = Fs/2.

Definition

Let f: R — R be a function. fis said to be a bandlimited function

~

if spt(f) is bounded. The bandwidth of a bandlimited function f

~

is the number supspt(f). fis said to be timelimited if spt(f) is
bounded.

Recall that the support of a function is the closure of the set
on which the function has non-zero value.
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§10.1 Application on Signal Processing

Definition
In signal processing, the Nyquist rate is twice the bandwidth of a
bandlimited function or a bandlimited channel.

Ching-hsiao Arthur Cheng it .5 % &35 %% 11 MA2050-*
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§10.1 Application on Signal Processing

Definition
In signal processing, the Nyquist rate is twice the bandwidth of a
bandlimited function or a bandlimited channel.

In the field of digital signal processing, the sampling theorem is a
fundamental bridge between continuous-time signals (often called "
analog signals”) and discrete-time signals (often called "digital sig-

nals”).
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§10.1 Application on Signal Processing

Definition
In signal processing, the Nyquist rate is twice the bandwidth of a

bandlimited function or a bandlimited channel.

In the field of digital signal processing, the sampling theorem is a
fundamental bridge between continuous-time signals (often called "
analog signals”) and discrete-time signals (often called "digital sig-
nals"). It establishes a sufficient condition for a sample rate ( B~k
#f % ) that permits a discrete sequence of samples to capture all

the information from a continuous-time signal of finite bandwidth.
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§10.1 Application on Signal Processing

Definition
In signal processing, the Nyquist rate is twice the bandwidth of a

bandlimited function or a bandlimited channel.

In the field of digital signal processing, the sampling theorem is a
fundamental bridge between continuous-time signals (often called "
analog signals”) and discrete-time signals (often called "digital sig-
nals"). It establishes a sufficient condition for a sample rate ( B~k
#f % ) that permits a discrete sequence of samples to capture all
the information from a continuous-time signal of finite bandwidth.
To be more precise, Shannon’s version of the theorem states that

“if an analog signal contains no frequencies higher than B hertz, it

is completely determined by giving its ordinates at a series of points

spaced 2B seconds apart.”
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§10.1 Application on Signal Processing

In the following, we examine the sampling theorem rigorously. We
start with the simplest version that the signal is continuous and

integrable.

~

Let f: R — R be a continuous integrable function. If spt(f) <

[00]
[—B, B], then fis fully determined by the sequence {f( 2% ) }k ,
=—00
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Chapter 10. Applications

§10.1 Application on Signal Processing

In the following, we examine the sampling theorem rigorously. We
start with the simplest version that the signal is continuous and

integrable.

~

Let f: R — R be a continuous integrable function. If spt(f) <

[00]
[—B, B], then fis fully determined by the sequence {f( 2% ) }k ,
=—00

and
o0

fix) = Z f(%)sinc(QBx— k) VxeR. (1)

k=—00

V.
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§10.1 Application on Signal Processing

In the following, we examine the sampling theorem rigorously. We
start with the simplest version that the signal is continuous and

integrable.

~

Let f: R — R be a continuous integrable function. If spt(f) <

e}
[~ B, B], then fis fully determined by the sequence {f(i)} ,
2B’ ) k=—
and L
fix) = k;ﬁ f(%)sinc(QBx— k) VxeR. (1)

Remark: Equation (1) is called the Whittaker-Shannon interpo-
lation formula.
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§10.1 Application on Signal Processing

~

Remark: Suppose that fe C(R;R) be such that £, in the sense of
tempered distribution, belongs to L?(IR) and has support in [ B, B].

By the definition of the Fourier transform for S(R)" we have

(F—f8)=0 VoeSR);
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§10.1 Application on Signal Processing

Remark: Suppose that fe C(R;R) be such that f. in the sense of
tempered distribution, belongs to L?(IR) and has support in [ B, B].

By the definition of the Fourier transform for S(R)" we have
(f~fd)=0 V4es[R);
thus by the fact that fe Ch(R; R),

fx) = F(x) Jf £)e?™de  VxeR.
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§10.1 Application on Signal Processing

Remark: Suppose that fe C(R;R) be such that f. in the sense of
tempered distribution, belongs to L?(IR) and has support in [ B, B].

By the definition of the Fourier transform for S(R)" we have

(F—f8)=0 VoeSR);

thus by the fact that fe Ch(R; R),
f(x) = F(x) f f(€)er™*de  VxeR.

o0
Therefore, the Fourier coefficients of f is again { f( ZB)} e}

k=—00
that the same argument of showing Shannon's Sampling Theorem

establishes the Whittaker-Shannon interpolation formula.
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§10.1 Application on Signal Processing

Remark (Inner product point of view): Let
ex(x) = sinc(x — k) = (7ksinc)(x) .

Then e, € L2(R) since

.2 ;02

2 1 1
J }ek(x)lde: J sinc®xdx = J ST i = —J P X ix < 0.
R R R

R T2x2 T x2
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§10.1 Application on Signal Processing

Remark (Inner product point of view): Let
ex(x) = sinc(x — k) = (7ksinc)(x) .

Then e, € L2(R) since

.2 ;02

2 1 1
J }ek(x)lde: J sinc®xdx = J ST i = —f P X ix < 0.
R R R R

m2x2 T x2

By the Plancherel formula (for L2-functions),
<ek: ef>L2(TR) - <TkSiHC,T(SiHC>LQ(R) - J H(g)ezﬂ—ikgn(f)GQWME df
R
_ JE e 2milk—0¢ e

whichisQif k# Zandis1lis k= /.
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§10.1 Application on Signal Processing

Remark (Inner product point of view): Let
ex(x) = sinc(x — k) = (7ksinc)(x) .

Then e, € L2(R) since

.2 ;02

2 1 1
J }ek(x)lde: J sinc®xdx = J ST i = —f P X ix < 0.
R R R R

m2x2 T x2

By the Plancherel formula (for L2-functions),
<ek: ef>L2(TR) - <TkSiHC,T(SiHC>LQ(R) - J H(g)ezﬂ—ikgn(f)GQWME df
R
_ JE e 2milk—0¢ e

which is 0 if k # ¢ and is 1 is k = £. Therefore, we find that {ex} ez

is an orthonormal set in L2(R).
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§10.1 Application on Signal Processing

Now suppose that fe L2(R) (so that f€ L2(R) by the Plancherel
formula) such that spt(?) < (—1/2,1/2). Then

if fis continuous at k.
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§10.1 Application on Signal Processing

Now suppose that fe L2(R) (so that f€ L2(R) by the Plancherel
formula) such that spt(?) < (—1/2,1/2). Then

(f, ek>L‘2(]R) = <?Tk/S§C>L2(R) = j}R ?(f)m d¢

= [ e de = [ Frepeme de = F(k) = £(k)

1

if fis continuous at k. By the previous remark, if fe L2(R) n C(R)
such that spt(?) < (—1/2,1/2), then

[e¢]

2 f(k)sinc(x — k) = 2 (f ex) 2 myek(x) VxeR.

k=—0o0 k=—00
In other words, one can treat {ex}icz as an “orthonormal basis” in
the space

~

{fe L2(R)(AC(R)) ’spt( ) < (—1/2, 1/2)}.
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§10.1 Application on Signal Processing

Lemma (Poisson summation formula)

Let the Fourier transform and the inverse Fourier transform be de-
fined by

F(e) = fnf(x)e—%"*fdx, flx) = f F(&)e>™*¢dg v fe LY(R").

n

Then
Z¢x+n Z¢ e v e 8(R).

n=—0o0 k=—00

The convergences on both sides are uniform.
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§10.1 Application on Signal Processing

Lemma (Poisson summation formula)
Let the Fourier transform and the inverse Fourier transform be de-
fined by

F(&) = f F(x)e 2" dx F(x) = f F(€)e>™ *Ede V¥ fe LY(R").

n

Then
Z¢x+n Z¢ e v e 8(R).

n=—0o0 k=—00

The convergences on both sides are uniform.

Remark: Using the original definition of the Fourier transform, for
¢ € 8(R) one has

S dlct2mm) = = 3 dmei.

n—=—a0 n
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§10.1 Application on Signal Processing

The Shah function, also called the (Dirac) Comb function and is

denoted by III, is a tempered distribution defined by

@gy= 3 gln) VéeS®).

n—=—0ao0
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§10.1 Application on Signal Processing

The Shah function, also called the (Dirac) Comb function and is
denoted by III, is a tempered distribution defined by

@gy= 3 gln) VéeS®).

n—=—0ao0

We note that the sum above makes sense if ¢ € $(R), and

o0

> ol = 3 (ko < (3 ) p6) = Cupido)

n=—00 n=—00 n=-—0o0

for all k> 2.
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§10.1 Application on Signal Processing

The Shah function, also called the (Dirac) Comb function and is
denoted by III, is a tempered distribution defined by

@gy= 3 gln) VéeS®).

n—=—0ao0

We note that the sum above makes sense if ¢ € $(R), and

o0

> ol = 3 (ko < (3 ) p6) = Cupido)

n=—00 n=—00 n=-—0o0

for all k = 2. Therefore, IIl is indeed a tempered distribution. Since

Q0
o(n) = (6p, @), symbolically we also write L = > 4.

n=—a0
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§10.1 Application on Signal Processing

e Properties of the Shah function:
@ By the definition of the Fourier transform of tempered distri-
butions,
~ Py m ~

(IL¢) =AM, ¢y = > ¢(n) VYoe8(R),
and the Poisson summation formula implies that

M¢y= Y, ¢k =L ¢) VeS®).

k=—00

Therefore, Il = Il = IIT in S(R)'.

Ching-hsiao Arthur Cheng it .5 % &35 %% 11 MA2050-*



Chapter 10. Applications

§10.1 Application on Signal Processing

@ For p # 0, define Ill, = ,%de[I, where d, is a dilation operator.
Then using

(T, ¢) =(T,\"dy-1¢) Ve 3R,
we find that for ¢ € S(R),

(00)

(I, ¢y = <1dpl]1./ ¢y = d16) = 3 (dp10)(n)

n—=—a0

Z ¢(pn) Z (Bpns 8-

n=—0o0 n=—0
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§10.1 Application on Signal Processing

@ For p # 0, define Ill, = ,%de[I, where d, is a dilation operator.
Then using

(T, ¢) =(T,\"dy-1¢) Ve 3R,
we find that for ¢ € S(R),

(00)

(I, ¢y = <1dpl]1./ ¢y = (Il dy19) = 3} (@r16)(n)

Z 625 pn) Z <5pn,¢>
In symbol, I, = Z dpn. Moreover,
n=—0o0
~ — 1
M,=M,=d, 1=~ .
p p p~! p =
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§10.1 Application on Signal Processing

© For f: R — R, let fIIl, : §(R) — C be defined by

(I gy= 3 Flpnp(pn) Ve SR).

n=—00
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§10.1 Application on Signal Processing

© For f: R — R, let fIIl, : §(R) — C be defined by

6y = 3 flpn)o(pr)  VoeS(R).

Then f1ll, € §(R) provided that > {(ny~kf(pn)| < oo for
n=—0a0
some ke N u {0} since

(FIL )| < 35 [Fpm)|<om*Cpry<{oen)
<max {L,p (& () Hf(pn)]) pu(9)

n=—0o0
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§10.1 Application on Signal Processing

© For f: R — R, let fIIl, : §(R) — C be defined by

(Fpgy= 3 fpmolen) Vo€ SE).

Then f1ll, € §(R) provided that > {(ny~k|f(pn)| < oo for
n=—0a0
some ke N U {0} since

KFIL )| < 35 [Fpm)emy—*Cpn*{o(en)

<max{L,p (S (myHKf(pn)]) (o)

n=—0o0
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§10.1 Application on Signal Processing

© For f: R — R, let fIIl, : §(R) — C be defined by

(I gy= 3 Flpnp(pn) Ve SR).

n=—00

Then fIII, € §(R)’ provided that Z (ny=k|f(pn)| < oo for
n=—o0
some ke N U {0} since

(Fp, ] < 52 [F(pmlKom o o(pn)
<max {1,p7}( 3 o Hf(pn)])pe(o).
In particular, fIII, € S(R)" if fe §(R). Moreover, we have

D, %¢ =4I, = 29I, VoeS®).
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§10.1 Application on Signal Processing

Q Suppose that fIII, € S(R)". If ¢, ¢ € §(R),

0

(FIO, % ¢,y = (FI, %y = Y. F(pn) (¢ * )(pn)

n=—0a0

— i f(pn) JRé(yfpn)'d)(y) dy

= i f(pn)<7pn¢7lp>'

which shows that (in symbol)

fll, % ¢ = >, f(pn)1ond V¢ eS(R)

n=—00

whenever f1II, € S(R)".
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§10.1 Application on Signal Processing

Definition
Let T € S(R")" be a tempered distribution. The support of T,

denoted by spt(T), is the complement of the openset O= ) U,
UeF(T)

where F(T) is a collection of open sets given by

F(T) = {Ug R" open‘gbeS(R") A spt(g) < U:><T,¢>:0}.

v
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Chapter 10. Applications

§10.1 Application on Signal Processing

Definition
Let T € S(R")" be a tempered distribution. The support of T,

denoted by spt(T), is the complement of the openset O= ) U,
UeF(T)

where F(T) is a collection of open sets given by

F(T) = {Ug R" open‘gbeS(R") A spt(g) < U:><T,¢>:0}.

v

The definition above implies that if U is open and U < O = spt(T)°,
then Ue F(T) (since if U¢ F(T), then any open set containing U
does not belong to F(T) which results in that O n U = &);
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§10.1 Application on Signal Processing

Definition
Let T € S(R")" be a tempered distribution. The support of T,

denoted by spt(T), is the complement of the openset O= ) U,
UeF(T)

where F(T) is a collection of open sets given by

F(T) = {Ug R" open}gbeS(R") A spt(¢) < U:><T,¢>:0}.

v

The definition above implies that if U is open and U < O = spt(T)°,
then Ue F(T) (since if U¢ F(T), then any open set containing U
does not belong to F(T) which results in that O n U = ¢); thus
spt(T)" is the “largest” open set in F(T).
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§10.1 Application on Signal Processing

Definition
Let T € S(R")" be a tempered distribution. The support of T,

denoted by spt(T), is the complement of the openset O= ) U,
UeF(T)

where F(T) is a collection of open sets given by

F(T) = {Ug R" open‘gbeS(R") A spt(g) < U:><T,¢>:0}.

v

The definition above implies that if U is open and U < O = spt(T)°,
then Ue F(T) (since if U¢ F(T), then any open set containing U
does not belong to F(T) which results in that O n U = ¢); thus
spt(T)" is the “largest” open set in F(T). Moreover, the support of

~

a tempered distribution must be closed; thus if spt(f) < (—B, B),

~

there exists 0 < R < B such that spt(f) < [—R, R]. In particular, a

~

choice of R is the supremum of spt(f), the bandwidth of .
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Chapter 10. Applications

§10.1 Application on Signal Processing

Let w € R". The support of J,, the delta function at w, is {w}.
To see this, let U be an open set in R” and w ¢ U. If ¢ € S(R")
and spt(¢) < U, then {4,,¢) = ¢(w) = 0; thus every open set
U that does not contain x belongs to F(d,). This implies that

U U=R"\{x}; thus the support of d,, is {w}.
UeF(d.,)
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§10.1 Application on Signal Processing

Let w € R". The support of J,, the delta function at w, is {w}.
To see this, let U be an open set in R” and w ¢ U. If ¢ € S(R")
and spt(¢) < U, then (0,,¢) = ¢(w) = 0; thus every open set
U that does not contain x belongs to F(d,). This implies that

U U=R"\{x}; thus the support of d,, is {w}.
UeF(d.,)

.

Let T € 8(R) be the tempered distribution T = §,, — 0_,,, where
w # 0. Then spt(T) = {w, —w}. Since the Fourier transform of the
signal f(t) = sin(27rwt) is A(g) = 5“’72& we find that spt(?) =

{—w,w}.

v
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Chapter 10. Applications

§10.1 Application on Signal Processing

Let T € S(R") and ¢ € S(R"). If spt(T) n spt(¢) = &, then
(T,¢)=0. )
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Chapter 10. Applications

§10.1 Application on Signal Processing

Let T € S(R") and ¢ € S(R"). If spt(T) n spt(¢) = &, then
(T,¢)=0.

Let ¢ € S(R") such that spt(T) n spt(¢) = &, and O = spt(T)".
Then spt(¢) < spt(T)t = O. Since O € F(T), {T,¢) = 0. o |

A

.
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§10.1 Application on Signal Processing

Let T € S(R") and ¢ € S(R"). If spt(T) n spt(¢) = &, then
(T,¢)=0.

Let ¢ € S(R") such that spt(T) n spt(¢) = &, and O = spt(T)".

Then spt(¢) < spt(T)t = O. Since O € F(T), {T,¢) = 0. o

Theorem ( if it is true)

Let fe C(R;R) n S(R). If spt(f) = (—B, B), then fis fully deter-
. k1%

mined by the sequence {f(@)}k:—oo' and

.
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Chapter 10. Applications

§10.2 Application on Partial Differential Equations

Recall that in mathematical modelling we talked about the heat
equation
uy—Au=1f in Qx(0,T), (2a)
u=uy on Qx{t=0}, (2b)
together with one of the following boundary condition (called (2c)):
© Dirichlet B.C.: u= gon 09.
ou ou .
© Neumann B.C.: N &on 0f2, where N = Vu- N is the
directional derivative of u in the outward-pointing direction N.
© Robin B.C.: ——i—u-gon 09.
Q Periodic B.C.: u(0,t) = u(L, t) for all t> 0.

Here ) € R" is an open set, and the functions f, g and h are given.
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§10.2 Application on Partial Differential Equations

§10.2.1 The case Q2 = (0, L)
e Dirichlet B.C.: Here the Dirichet boundary condition becomes
u(0,t) = a(t) and u(L, t) = b(t) for some given functions a, b.

Let v(x, t) = u(x, t) — Mx— a(t). Then v satisfies
vi—Vvie=F in (0,L) x(0,T), (3a)
v=vw on (0,L)x{t=0}, (3b)
v=20 on {0,L}x(0,T), (3¢)
where F(x,t) = f(x,t) — Mx— a’(t), and vp(x) = up(x) —
Mx— a(0). In other words, W.L.O.G. we can assume that
a=b=0.
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§10.2 Application on Partial Differential Equations

Now consider
Up — U = [ in (0,L) x (0, T),
u=up on (0,L) x {t=0},
u=0 on {0,L} x (0, 7).

The idea of solving the PDE above is to express the solution u(x, t),
for each t € (0, T) as a Fourier series. There are three possible

choices:
Q0
Q ulxt)= %l + > [ek(t) cos 2mhx + sk(t) sin —kx}
2 =1 L L
Q0
Q u(x,t) = COT(t) + >, ck(t) cos ?: the cosine series of u.
k=1
a0

k . .
Q u(x, t) = > sk(t)sin %(: the sine series of w.
k=1
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Chapter 10. Applications

§10.2 Application on Partial Differential Equations

Due to the boundary condition, we choose the sine series to represent
the solution.
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Chapter 10. Applications

§10.2 Application on Partial Differential Equations

Due to the boundary condition, we choose the sine series to represent
the solution. We also represent the initial data uy and the forcing f
using the sine series
Q0
Tkx

up(x) = 2 dogsin ==, f(x,t) = ’; fi(t) sin -
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Chapter 10. Applications

§10.2 Application on Partial Differential Equations

Due to the boundary condition, we choose the sine series to represent
the solution. We also represent the initial data uy and the forcing f
using the sine series

up(x) = 3 I sin@ f(x,t) = if(t)sin@
0 = “ 0k L’ s b) — =] k L’
and assume that
e ol
0 mhkx 02 . mkx
; —t[ ) sin T} , Ux(x, t) = /; 7 [sk(t) sin T} .
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Chapter 10. Applications

§10.2 Application on Partial Differential Equations

Due to the boundary condition, we choose the sine series to represent
the solution. We also represent the initial data uy and the forcing f
using the sine series
Q0 o0
up(x) = Lﬁ)ksin#, f(x,t) = Z fk(t)sin@(,
k=1 =1

and assume that

ur(x, t) = i a(it[sk(t) sin #{}, Usx(x, £) = i

Then {si(t)},_, satisfies

2k2

i (S,i(t) + %Sk(t» sin e —
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Chapter 10. Applications

§10.2 Application on Partial Differential Equations

Therefore, for each k€ N the function si(t) satisfies the IVP

Sk(t) +

sk(t) = fi(t),  sk(0) = dog-
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Chapter 10. Applications

§10.2 Application on Partial Differential Equations

Therefore, for each k€ N the function si(t) satisfies the IVP
7.‘.2/(2
2
Method of Integrating factor:

Sk(t) + sk(t) = fi(t),  sk(0) = dog-

2Kt
=)

%[Qk(t)sk(t)] = Qu(B)fi(t) ;

Multiplying both sides by Q(t) = cxp(

thus
Qi(t)sk(t) — sk(0 JQk (5)fk(s)
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§10.2 Application on Partial Differential Equations

Therefore, for each k€ N the function si(t) satisfies the IVP

0 T2 k> ~
sk(®) + —zsk(0) = (@) , sk(0) = doy -
Method of Integrating factor:
212
Multiplying both sides by Q(t) = exp (W%t)

%[Qk(t)sk(t)] = Qu(B)fi(t) ;

thus
Qu(t)sk(t) — sk(0) = L Qk(s)fk(s) ds.

Therefore, we expect that the solution is given by

O x23e t 72k2(s—t) k
u(x, t) = Z {e 2 (g + ) e 2 fi(s)ds|sin %
k=1
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Chapter 10. Applications

§10.2 Application on Partial Differential Equations

Therefore, for each k€ N the function si(t) satisfies the IVP

0 T2 k> ~
sk(®) + —zsk(0) = (@) , sk(0) = doy -
Method of Integrating factor:
212
Multiplying both sides by Q(t) = exp (%ﬁt)

%[Qk(t)sk(t)] = Qu(B)fi(t) ;

thus
_7.-21(2{/\ t wzkz(sft)
sk(t) =e 2 dox+ | e & fils)ds.
0
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§10.2 Application on Partial Differential Equations

Therefore, for each k€ N the function si(t) satisfies the IVP

0 T2 k> ~
sk(®) + —zsk(0) = (@) , sk(0) = doy -
Method of Integrating factor:
212
Multiplying both sides by Q(t) = exp (%ﬁt)

%[Qk(t)sk(t)] = Qu(B)fi(t) ;

thus
_7.-21(2{/\ t wzkz(sft)
sk(t) =e 2 dox+ | e & fils)ds.
0

Therefore, we expect that the solution is given by

O x23e t 72k2(s—t) k
u(x, t) = Z {e 2 (g + ) e 2 fi(s)ds|sin %
k=1
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Chapter 10. Applications

§10.2 Application on Partial Differential Equations

e Neumann B.C.: Here the Neumann boundary condition becomes

ux(0,t) = a(t) and ux(L, t) = b(t) for some given functions a, b.

b(O) — adL o _

Let v(x,t) = u(x, t) — a(t)x. Then v satisfies

2L
vi—Vvix=F in (0,L) x(0,7), (4a)
v=vw on (0,L)x{t=0}, (4b)
Vi =0 on {0,L}x(0,T), (4¢c)
b(t) — a(t)L

where F(x, t) = f(x,t) +

b(0) — a(O)LX2
2L
that a= b= 0.

i —a’(t)x, and vy(x) = up(x) —

— a(0)x. In other words, W.L.O.G. we can assume
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§10.2 Application on Partial Differential Equations

Due to the boundary condition, we choose the cosine series to rep-
resent the solution:

u(x, t) = %(®) + i ck(t) cos @(
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Chapter 10. Applications

§10.2 Application on Partial Differential Equations

Due to the boundary condition, we choose the cosine series to rep-
resent the solution:

u(x, t) = %(®) + i ck(t) cos @(

We also represent the initial data uy and the forcing f using the sine
series

8

~ Q0
up(x =y Okcos& fix,t) = ol 4 Z fi(t) cos — ,
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Chapter 10. Applications

§10.2 Application on Partial Differential Equations

Due to the boundary condition, we choose the cosine series to rep-

resent the solution:

u(x, t) = %(®) + i ck(t) cos @(

We also represent the initial data uy and the forcing f using the sine

series
~ o0 [o0]
o . mkx _ fo(t) mkx
UO(X) = 7 + Z UOk COS T 5 f(X, t) = T + Z fk(t) COS T B
k=1 k=1
and assume that
[0 0] o0 0
0 Tkx 02 Tkx
ur(x, t) = ; 5 [Ck(t) cos T} , Ux(x, t) = ’; " [Ck(t) cos T} .
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§10.2 Application on Partial Differential Equations

Then {ci(t)},_, satisfies

¢t = 2 k? whx ot = cos mkx
02() + > (c,i(t) + 3 ck(t)) cos —— = % + >0 filt) >
k=1 k=1
J- kx ¢ N A~ k
coéO) 4 Z ck(0) cos % = % I Z uokcos%<
k=1 k=1

A 45 3% T MA2050-*
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§10.2 Application on Partial Differential Equations

Then {ci(t)},_, satisfies

cl(t & T2 k> mhkx  fo(t & cos mkx
02()+ 2 ( W(t) + B ck(t))cosT:%+ ka() >
k=1 k=1
= k it = k
%(0) 4 Z ck(0) cos% = % I Z Okcos%<
k=1

The comparison of coefficients shows that ¢, satisfies the IVP

q(t) = fo(),  (0) = dog

0 2k? ~
Ck(t) -+ ?Ck(t) = fk(t), Ck(O) = Ug -
and are given by
t 2412 t 71.2/(2(571»)
co(t) = doo + f fo(s)ds, ck(t)=e T dox+ [ e 2 fi(s)ds.
0 0
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§10.2 Application on Partial Differential Equations

Therefore, the solution to
U — Uy = F in (0,L) x (0, T),
u=up on (0,L) x {t=0},
uc=0 on {0,L} x(0,T),

is
1 R t
ux 6) = [uoo + | fls) ds}
0
O 222 t 722 (s—t) k
—I—Z [e 2 tuo,(—i— e 2 fils) ds] cos%(.
k=1 0
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