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Chapter 10. Applications

§10.1 Application on Signal Processing
In the study of signal processing, the Fourier transform and the
inverse Fourier transform are often defined by

pf (ξ) =
ż

Rn
f (x)e´2πi x¨ξdx , qf (x) =

ż

Rn
f (ξ)e 2πi x¨ξdξ @ f P L1(Rn) .

For T P S(Rn)1, the Fourier transform of T is defined again by

x pT, ϕy = xT, pϕy @ ϕ P S(Rn) .

We also note that the definitions of the translation, dilation, and
reflection of tempered distributions are independent of the Fourier
transform, and are still defined by

xτhT, ϕy = xT, τ´hϕy , xdλT, ϕy = xT, λndλ´1ϕy , x rT, ϕy = xT, rϕy

for all ϕ P S(Rn).
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§10.1 Application on Signal Processing
Concerning the convolution, we consider the ˙ convolution operator

(f ˙g)(x)=
ż

Rn
f (y)g(x´y) dy=

ż

Rn
f (x´y)g(y) dy @ f, g P L1(Rn).

instead of › convolution operators (which is ˙/
?
2π

n). The convo-
lution of T and f P S(Rn) is defined by

xT ˙f, ϕy = xT, rf ˙ ϕy = x rT, f ˙ rϕy @ ϕ P S(Rn) .

Then for all T P S(Rn)1,
1

q

pT =
p

qT = T;
2 yτhT(ξ) = pT(ξ)e´2πiξ¨h, ydλT = λnd 1

λ

pT, p

rT = qT.
3 yT ˙ f = pT pf and xf T = pf ˙ pT for all f P S(Rn). Moreover, if

S P S(Rn)1 has the property that S ˙ ϕ P S(Rn) for all ϕ P Rn,
then {T ˙ S = pT pS in S(Rn)1 for all T P S(Rn)1.
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§10.1 Application on Signal Processing
Moreover,

1 pδ = qδ = 1 in S(Rn)1, and pδh(ξ) = xτhδ(ξ) = }δ´h = ~τ´hδ =

e´2πih¨ξ in S(Rn)1 for all h P Rn.
2 By Euler’s identity,

{cos(2πωx)(ξ) = 1

2
(δω + δ´ω) , {sin(2πωx)(ξ) = 1

2i(δω ´ δ´ω) .

3 δ ˙ δ = δ, and δa ˙ δb = δa+b for all a, b P Rn.
4 δ ˙ ϕ = ϕ and δa ˙ ϕ = τaϕ for all ϕ P S(Rn).
5 Re-define the rect function Π : R Ñ R by

Π(x) =
#

1 if |x | ă 1/2 ,

0 if |x | ě 1/2 .

Then pΠ(ξ) = qΠ(ξ) = sinc(ξ), where sinc is the normalized
sinc function.
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§10.1 Application on Signal Processing
6 Let Λ : R Ñ R be the triangle function define by

Λ(x) =
#

1 ´ |x | if |x | ă 1 ,

0 if |x | ě 1 .

Then by the fact that Λ is an even function, if ξ ‰ 0,

pΛ(ξ) = 2

ż 1

0
(1 ´ x) cos(2πxξ) dx

= 2
[
(1 ´ x)sin(2πxξ)

2πξ

ˇ

ˇ

ˇ

x=1

x=0
+

ż 1

0

sin(2πxξ)
2πξ

dx
]

=
1 ´ cos(2πξ)

2π2ξ2
=

sin2 πξ

π2ξ2
,

while pΛ(0) = 1. Therefore, pΛ(ξ) = sinc2(ξ). Using the prop-
erty of convolution, we have Π ˙ Π = Λ.
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Chapter 10. Applications

§10.1 Application on Signal Processing
When a continuous function, x(t), is sampled at a constant rate Fs
samples per second（以每秒 Fs 次均勻取樣）, there is always an
unlimited number of other continuous functions that fit the same
set of samples; however, only one of them is bandlimited to Fs/2

cycles per second (hertz), which means that its Fourier transform,
　px(f ), is 0 for all |f | ě Fs/2.
Definition
Let f : R Ñ R be a function. f is said to be a bandlimited function
if spt(pf ) is bounded. The bandwidth of a bandlimited function f
is the number sup spt(pf ). f is said to be timelimited if spt(f ) is
bounded.

Recall that the support of a function is the closure of the set
on which the function has non-zero value.

Ching-hsiao Arthur Cheng 鄭經斅 分析導論ＩＩ MA2050-*



Chapter 10. Applications

§10.1 Application on Signal Processing
When a continuous function, x(t), is sampled at a constant rate Fs
samples per second（以每秒 Fs 次均勻取樣）, there is always an
unlimited number of other continuous functions that fit the same
set of samples; however, only one of them is bandlimited to Fs/2

cycles per second (hertz), which means that its Fourier transform,
　px(f ), is 0 for all |f | ě Fs/2.
Definition
Let f : R Ñ R be a function. f is said to be a bandlimited function
if spt(pf ) is bounded. The bandwidth of a bandlimited function f
is the number sup spt(pf ). f is said to be timelimited if spt(f ) is
bounded.

Recall that the support of a function is the closure of the set
on which the function has non-zero value.

Ching-hsiao Arthur Cheng 鄭經斅 分析導論ＩＩ MA2050-*



Chapter 10. Applications

§10.1 Application on Signal Processing
When a continuous function, x(t), is sampled at a constant rate Fs
samples per second（以每秒 Fs 次均勻取樣）, there is always an
unlimited number of other continuous functions that fit the same
set of samples; however, only one of them is bandlimited to Fs/2

cycles per second (hertz), which means that its Fourier transform,
　px(f ), is 0 for all |f | ě Fs/2.
Definition
Let f : R Ñ R be a function. f is said to be a bandlimited function
if spt(pf ) is bounded. The bandwidth of a bandlimited function f
is the number sup spt(pf ). f is said to be timelimited if spt(f ) is
bounded.

Recall that the support of a function is the closure of the set
on which the function has non-zero value.

Ching-hsiao Arthur Cheng 鄭經斅 分析導論ＩＩ MA2050-*



Chapter 10. Applications

§10.1 Application on Signal Processing
When a continuous function, x(t), is sampled at a constant rate Fs
samples per second（以每秒 Fs 次均勻取樣）, there is always an
unlimited number of other continuous functions that fit the same
set of samples; however, only one of them is bandlimited to Fs/2

cycles per second (hertz), which means that its Fourier transform,
　px(f ), is 0 for all |f | ě Fs/2.
Definition
Let f : R Ñ R be a function. f is said to be a bandlimited function
if spt(pf ) is bounded. The bandwidth of a bandlimited function f
is the number sup spt(pf ). f is said to be timelimited if spt(f ) is
bounded.

Recall that the support of a function is the closure of the set
on which the function has non-zero value.

Ching-hsiao Arthur Cheng 鄭經斅 分析導論ＩＩ MA2050-*



Chapter 10. Applications

§10.1 Application on Signal Processing
Definition
In signal processing, the Nyquist rate is twice the bandwidth of a
bandlimited function or a bandlimited channel.

In the field of digital signal processing, the sampling theorem is a
fundamental bridge between continuous-time signals (often called ”
analog signals”) and discrete-time signals (often called ”digital sig-
nals”). It establishes a sufficient condition for a sample rate（取樣
頻率）that permits a discrete sequence of samples to capture all
the information from a continuous-time signal of finite bandwidth.
To be more precise, Shannon’s version of the theorem states that
“if an analog signal contains no frequencies higher than B hertz, it
is completely determined by giving its ordinates at a series of points
spaced 1

2B seconds apart.”
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§10.1 Application on Signal Processing
In the following, we examine the sampling theorem rigorously. We
start with the simplest version that the signal is continuous and
integrable.
Theorem
Let f : R Ñ R be a continuous integrable function. If spt(pf ) Ď

[´B,B ], then f is fully determined by the sequence
!

f
( k
2B

))8

k=´8
,

and
f (x) =

8
ÿ

k=´8

f
( k
2B

)
sinc(2Bx ´ k) @ x P R . (1)

Remark: Equation (1) is called the Whittaker–Shannon interpo-
lation formula.
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§10.1 Application on Signal Processing
Remark: Suppose that f P C(R;R) be such that pf, in the sense of
tempered distribution, belongs to L2(R) and has support in [´B,B ].
By the definition of the Fourier transform for S(R)1 we have

@

q

pf ´ f, ϕy = 0 @ ϕ P S(R) ;

thus by the fact that q

pf P Cb(R;R),

f (x) = q

pf (x) =
ż B

´B
pf (ξ)e 2πiξx dξ @ x P R .

Therefore, the Fourier coefficients of pf is again
!

1

2B f
(´k
2B

))8

k=´8
so

that the same argument of showing Shannon’s Sampling Theorem
establishes the Whittaker–Shannon interpolation formula.
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§10.1 Application on Signal Processing
Remark (Inner product point of view): Let

ek(x) = sinc(x ´ k) = (τk sinc)(x) .

Then ek P L2(R) since
ż

R

ˇ

ˇek(x)
ˇ

ˇ

2dx =
ż

R
sinc2xdx =

ż

R

sin2 πx
π2x 2

dx =
1

π

ż

R

sin2 x
x 2

dx ă 8 .

By the Plancherel formula (for L2-functions),

xek, eℓyL2(R) =
@

­τksinc,­τℓsinc
D

L2(R) =
ż

R
Π(ξ)e 2πikξΠ(ξ)e 2πiℓξ dξ

=
ż 1

2

´ 1
2

e 2πi(k´ℓ)ξ dξ

which is 0 if k ‰ ℓ and is 1 is k = ℓ. Therefore, we find that tekukPZ

is an orthonormal set in L2(R).
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is an orthonormal set in L2(R).
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Chapter 10. Applications

§10.1 Application on Signal Processing
Now suppose that f P L2(R) (so that pf P L2(R) by the Plancherel
formula) such that spt(pf ) Ď

(
´1/2, 1/2

)
. Then

xf, ekyL2(R) =
@

pf, {τk sin c
D

L2(R) =
ż

R

pf (ξ)Π(´ξ)e´2πikξ dξ

=
ż 1

2

´ 1
2

pf (ξ)e2πikξ dξ =
ż

R

pf (ξ)e2πikξ dξ = q

pf (k) = f (k)

if f is continuous at k. By the previous remark, if f P L2(R) X C(R)
such that spt(pf ) Ď

(
´1/2, 1/2

)
, then

f (x) =
8
ÿ

k=´8

f (k)sinc(x ´ k) =
8
ÿ

k=´8

(f, ek)L2(R)ek(x) @ x P R .

In other words, one can treat tekukPZ as an “orthonormal basis” in
the space

!

f P L2(R)
(

XC(R)
) ˇ
ˇ

ˇ
spt(pf ) Ď

(
´1/2, 1/2

))
.
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Chapter 10. Applications

§10.1 Application on Signal Processing
Lemma (Poisson summation formula)
Let the Fourier transform and the inverse Fourier transform be de-
fined by

pf (ξ) =
ż

Rn
f (x)e´2πi x¨ξdx , qf (x) =

ż

Rn
f (ξ)e 2πi x¨ξdξ @ f P L1(Rn) .

Then
8
ÿ

n=´8

ϕ(x + n) =
8
ÿ

k=´8

pϕ(k)e 2πikx @ ϕ P S(R) .

The convergences on both sides are uniform.

Remark: Using the original definition of the Fourier transform, for
ϕ P S(R) one has

8
ÿ

n=´8

ϕ(x + 2nπ) = 1

2π

8
ÿ

n=´8

pϕ(n)e inx .
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Chapter 10. Applications

§10.1 Application on Signal Processing
The Shah function, also called the (Dirac) Comb function and is
denoted by III, is a tempered distribution defined by

xIII, ϕy =
8
ÿ

n=´8

ϕ(n) @ ϕ P S(R) .

We note that the sum above makes sense if ϕ P S(R), and
8
ÿ

n=´8

ϕ(n) =
8
ÿ

n=´8

xny´kxnykϕ(n) ď

( 8
ÿ

n=´8

xny´k
)

pk(ϕ) = Ckpk(ϕ)

for all k ě 2. Therefore, III is indeed a tempered distribution. Since
ϕ(n) = xδn, ϕy, symbolically we also write III =

8
ř

n=´8

δn.
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Chapter 10. Applications

§10.1 Application on Signal Processing
‚ Properties of the Shah function:

1 By the definition of the Fourier transform of tempered distri-
butions,

x pIII, ϕy = xIII, pϕy =
8
ÿ

n=´8

pϕ(n) @ ϕ P S(R) ,

and the Poisson summation formula implies that

x pIII, ϕy =
8
ÿ

k=´8

ϕ(k) = xIII, ϕy @ ϕ P S(R) .

Therefore, pIII = qIII = III in S(R)1.

Ching-hsiao Arthur Cheng 鄭經斅 分析導論ＩＩ MA2050-*



Chapter 10. Applications

§10.1 Application on Signal Processing
2 For p ‰ 0, define IIIp =

1

p dpIII, where dp is a dilation operator.
Then using

xdλT, ϕy = xT, λndλ´1ϕy @ ϕ P S(Rn) ,

we find that for ϕ P S(R),

xIIIp, ϕy =
A

1

pdpIII, ϕ
E

= xIII, dp´1ϕy =
8
ÿ

n=´8

(dp´1ϕ)(n)

=
8
ÿ

n=´8

ϕ(pn) =
8
ÿ

n=´8

xδpn, ϕy .

In symbol, IIIp =
8
ř

n=´8

δpn. Moreover,

xIIIp = |IIIp = dp´1III = 1

p III 1
p
.
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Chapter 10. Applications

§10.1 Application on Signal Processing
3 For f : R Ñ R, let f IIIp : S(R) Ñ C be defined by

xf IIIp, ϕy =
8
ÿ

n=´8

f (pn)ϕ(pn) @ ϕ P S(R) .

Then f IIIp P S(R)1 provided that
8
ř

n=´8

xny´k|f (pn)| ă 8 for
some k P N Y t0u since

ˇ

ˇxf IIIp, ϕy
ˇ

ˇ ď
8
ř

n=´8

ˇ

ˇf (pn)
ˇ

ˇxpny´kxpnykˇ
ˇϕ(pn)

ˇ

ˇ

ď max
␣

1, p´k(
( 8

ř

n=´8

xny´kˇ
ˇf (pn)

ˇ

ˇ

)
pk(ϕ) .

In particular, f IIIp P S(R)1 if f P S(R). Moreover, we have

{IIIp ˙ ϕ = pϕ xIIIp =
1

p
pϕ III 1

p
@ ϕ P S(R) .
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Chapter 10. Applications

§10.1 Application on Signal Processing
4 Suppose that f IIIp P S(R)1. If ϕ, ψ P S(R),

xf IIIp ˙ ϕ, ψy = xf IIIp, rϕ˙ ψy =
8
ÿ

n=´8

f (pn)(rϕ˙ ψ)(pn)

=
8
ÿ

n=´8

f (pn)
ż

R
ϕ(y´pn)ψ(y) dy

=
8
ÿ

n=´8

f (pn)xτpnϕ, ψy .

which shows that (in symbol)

f IIIp ˙ ϕ =
8
ÿ

n=´8

f (pn)τpnϕ @ ϕ P S(R)

whenever f IIIp P S(R)1.
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Chapter 10. Applications

§10.1 Application on Signal Processing
Definition
Let T P S(Rn)1 be a tempered distribution. The support of T,
denoted by spt(T), is the complement of the open set O =

Ť

UPF(T )

U,
where F(T) is a collection of open sets given by

F(T) =
!

U Ď Rn open
ˇ

ˇ

ˇ
ϕ P S(Rn) ^ spt(ϕ) Ď U ñ xT, ϕy = 0

)

.

The definition above implies that if U is open and U Ď O = spt(T)A,
then U P F(T) (since if U R F(T), then any open set containing U
does not belong to F(T) which results in that O X U = H); thus
spt(T)A is the “largest” open set in F(T). Moreover, the support of
a tempered distribution must be closed; thus if spt(pf ) Ď (´B,B),
there exists 0 ă R ă B such that spt(pf ) Ď [´R,R ]. In particular, a
choice of R is the supremum of spt(pf ), the bandwidth of f.
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Chapter 10. Applications

§10.1 Application on Signal Processing
Example
Let ω P Rn. The support of δω, the delta function at ω, is tωu.
To see this, let U be an open set in Rn and ω R U. If ϕ P S(Rn)

and spt(ϕ) Ď U, then xδω, ϕy = ϕ(ω) = 0; thus every open set
U that does not contain x belongs to F(δω). This implies that

Ť

UPF(δω)

U = Rnztxu; thus the support of δω is tωu.

Example
Let T P S(R) be the tempered distribution T = δω ´ δ´ω, where
ω ‰ 0. Then spt(T) = tω,´ωu. Since the Fourier transform of the

signal f (t) = sin(2πωt) is pf (ξ) = δω ´ δ´ω

2i , we find that spt(pf ) =
t´ω, ωu.
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Chapter 10. Applications

§10.1 Application on Signal Processing
Lemma
Let T P S(Rn)1 and ϕ P S(Rn). If spt(T) X spt(ϕ) = H, then
xT, ϕy = 0.

Proof.
Let ϕ P S(Rn) such that spt(T) X spt(ϕ) = H, and O = spt(T)A.
Then spt(ϕ) Ď spt(T)A = O. Since O P F(T), xT, ϕy = 0. ˝

Theorem (Not known if it is true)

Let f P C(R;R) X S(R)1. If spt(pf ) Ď (´B,B), then f is fully deter-
mined by the sequence

!

f
( k
2B

))8

k=´8
, and

f =
8
ÿ

k=´8

f
( k
2B

)
τ k
2B

d 1
2B

sinc in S(R)1 .
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Chapter 10. Applications

§10.2 Application on Partial Differential Equations
Recall that in mathematical modelling we talked about the heat
equation

ut ´ ∆u = f in Ω ˆ (0,T ) , (2a)

u = u0 on Ω ˆ tt = 0u , (2b)

together with one of the following boundary condition (called (2c)):
1 Dirichlet B.C.: u = g on BΩ.
2 Neumann B.C.: Bu

BN = g on BΩ, where Bu
BN = ∇u ¨ N is the

directional derivative of u in the outward-pointing direction N.
3 Robin B.C.: Bu

BN + u = g on BΩ.
4 Periodic B.C.: u(0, t) = u(L, t) for all t ą 0.

Here Ω Ď Rn is an open set, and the functions f, g and h are given.
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Chapter 10. Applications

§10.2 Application on Partial Differential Equations
§10.2.1 The case Ω = (0, L)
‚ Dirichlet B.C.: Here the Dirichet boundary condition becomes
u(0, t) = a(t) and u(L, t) = b(t) for some given functions a, b.

Let v(x, t) = u(x, t) ´
b(t) ´ a(t)

L x ´ a(t). Then v satisfies

vt ´ vxx = F in (0, L) ˆ (0,T ) , (3a)

v = v0 on (0, L) ˆ tt = 0u , (3b)

v = 0 on t0, Lu ˆ (0,T ) , (3c)

where F(x, t) = f (x, t) ´
b 1(t) ´ a 1(t)

L x ´ a 1(t), and v0(x) = u0(x) ´

b(0) ´ a(0)
L x ´ a(0). In other words, W.L.O.G. we can assume that

a = b = 0.
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§10.2 Application on Partial Differential Equations
Now consider

ut ´ uxx = f in (0, L) ˆ (0,T ) ,

u = u0 on (0, L) ˆ tt = 0u ,

u = 0 on t0, Lu ˆ (0,T ) .

The idea of solving the PDE above is to express the solution u(x, t),
for each t P (0,T ) as a Fourier series. There are three possible
choices:

1 u(x, t) = c0(t)
2

+
8
ř

k=1

[
ck(t) cos 2πkx

L + sk(t) sin 2πkx
L

]
.

2 u(x, t) = c0(t)
2

+
8
ř

k=1

ck(t) cos πkx
L : the cosine series of u.

3 u(x, t) =
8
ř

k=1

sk(t) sin πkx
L : the sine series of u.
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§10.2 Application on Partial Differential Equations
Due to the boundary condition, we choose the sine series to represent
the solution. We also represent the initial data u0 and the forcing f
using the sine series

u0(x) =
8
ÿ

k=1

pu0k sin πkx
L , f (x, t) =

8
ÿ

k=1

fk(t) sin πkx
L ,

and assume that

ut(x, t) =
8
ÿ

k=1

B

Bt

[
sk(t) sin πkx

L

]
, uxx(x, t) =

8
ÿ

k=1

B2

Bx2
[
sk(t) sin πkx

L

]
.

Then
␣

sk(t)
(8

k=1
satisfies

8
ÿ

k=1

(
s 1
k(t) +

π2k2
L2

sk(t)
)

sin πkx
L =

8
ÿ

k=1

fk(t)
sinπkx

L ,

8
ÿ

k=1

sk(0) sin πkx
L =

8
ÿ

k=1

pu0k sin πkx
L .
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Chapter 10. Applications

§10.2 Application on Partial Differential Equations
Therefore, for each k P N the function sk(t) satisfies the IVP

s 1
k(t) +

π2k2
L2

sk(t) = fk(t) , sk(0) = pu0k .

Method of Integrating factor:
Multiplying both sides by Qk(t) ” exp

(π2k2t
L2

)
,

d
dt
[
Qk(t)sk(t)

]
= Qk(t)fk(t) ;

thus
Qk(t)sk(t) ´ sk(0) =

ż t

0

Qk(s)fk(s) ds .

Therefore, we expect that the solution is given by

u(x, t) =
8
ÿ

k=1

[
e´π2k2t

L2
pu0k +

ż t

0

e
π2k2(s´t)

L2 fk(s) ds
]

sin πkx
L .
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Chapter 10. Applications

§10.2 Application on Partial Differential Equations
‚ Neumann B.C.: Here the Neumann boundary condition becomes
ux(0, t) = a(t) and ux(L, t) = b(t) for some given functions a, b.

Let v(x, t) = u(x, t) ´
b(t) ´ a(t)L

2L x 2 ´ a(t)x. Then v satisfies

vt ´ vxx = F in (0, L) ˆ (0,T ) , (4a)

v = v0 on (0, L) ˆ tt = 0u , (4b)

vx = 0 on t0, Lu ˆ (0,T ) , (4c)

where F(x, t) = f (x, t) + b(t) ´ a(t)L
L ´ a 1(t)x, and v0(x) = u0(x) ´

b(0) ´ a(0)L
2L x2 ´ a(0)x. In other words, W.L.O.G. we can assume

that a = b = 0.
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Chapter 10. Applications

§10.2 Application on Partial Differential Equations
Due to the boundary condition, we choose the cosine series to rep-
resent the solution:

u(x, t) = c0(t)
2

+
8
ÿ

k=1

ck(t) cos πkx
L .

We also represent the initial data u0 and the forcing f using the sine
series

u0(x) =
pu00

2
+

8
ÿ

k=1

pu0k cos πkx
L , f (x, t) = f0(t)

2
+

8
ÿ

k=1

fk(t) cos πkx
L ,

and assume that

ut(x, t) =
8
ÿ

k=1

B

Bt

[
ck(t) cos πkx

L

]
, uxx(x, t) =

8
ÿ

k=1

B2

Bx2
[
ck(t) cos πkx

L

]
.
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§10.2 Application on Partial Differential Equations
Then

␣

ck(t)
(8

k=0
satisfies

c 1
0(t)
2

+
8
ÿ

k=1

(
c 1

k(t) +
π2k2
L2

ck(t)
)

cos πkx
L =

f0(t)
2

+
8
ÿ

k=1

fk(t)
cosπkx

L ,

c0(0)
2

+
8
ÿ

k=1

ck(0) cos πkx
L =

pu00

2
+

8
ÿ

k=1

pu0k cos πkx
L .

The comparison of coefficients shows that ck satisfies the IVP

c 1
0(t) = f0(t) , c0(0) = pu00

c 1
k(t) +

π2k2
L2

ck(t) = fk(t) , ck(0) = pu0k .

and are given by

c0(t) = pu00+
ż t

0

f0(s) ds , ck(t) = e´π2k2t
L2

pu0k +
ż t

0

e
π2k2(s´t)

L2 fk(s) ds .
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§10.2 Application on Partial Differential Equations
Therefore, the solution to

ut ´ uxx = f in (0, L) ˆ (0,T ) ,

u = u0 on (0, L) ˆ tt = 0u ,

ux = 0 on t0, Lu ˆ (0,T ) ,

is

u(x, t) = 1

2

[
pu00 +

ż t

0

f0(s) ds
]

+
8
ÿ

k=1

[
e´π2k2t

L2
pu0k +

ż t

0

e
π2k2(s´t)

L2 fk(s) ds
]

cos πkx
L .

Ching-hsiao Arthur Cheng 鄭經斅 分析導論ＩＩ MA2050-*


	Chapter 10. Applications



