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Chapter 1. Logic and Proofs
§1.1 Propositions and Connectives

Definition

A proposition is a sentence that has exactly one truth value. It is
either true, which we denote by T, or false, which we denote by F.

72 > 60 (F), 7 > 3 (T), Earth is the closest planet to the sun (F).

The statement “the north Pacific right whale ( & # &7 ) will be ex-
tinct species before the year 2525" has one truth value but it takes
time to determine the truth value.

That “Euclid was left-handed” is a statement that has one truth
value but may never be known.

”
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Chapter 1. Logic and Proofs
§1.1 Propositions and Connectives

Definition

A negation of a proposition P, denoted by ~ P, is the proposition

“not P". The proposition ~P is true exactly when P is false
false true

Definition

) . conjunction
Given propositions P and Q, the ~~ ) of P and Q, denoted
disjunction
PAQ . ..and P AQ |
by , is the proposition “P Q" is true exactly
PvQ or PvQ

both P and Q are true

when i :
at least one of P or Q is true
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Chapter 1. Logic and Proofs
§1.1 Propositions and Connectives

Example

Now we analyze the sentence “either 7 is prime and 9 is even, or else 11 is
not less than 3". Let P denote the sentence “7 is a prime”, Q denote the
sentence “9 is even”, and R denote the sentence “11 is less than 3"”. Then
the original sentence can be symbolized by (P A Q) v (~R), and the table
of truth value for this sentence is

P Q R [PAQ| ~R | (PAQ)v(~R)
T[T |T ] T |F T
T|T|F|] T | T T
T F|T| F F F
Fl T | T| F F F
T|F|F | F | T T
FIT|F| F | T T
FIlF|T F F F
F|F|F F | T T

Since P is true and Q, R are false, the sentence (P A Q) v (~R) is true.
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Chapter 1. Logic and Proofs
§1.1 Propositions and Connectives

Definition

tautology - _ true
o is a propositional form that is for every
contradiction false

assignment of truth values to its component.

The logic symbol (P v Q) v (~PA~Q) is a tautology.

The logic symbol ~(Pv ~P) v (QA ~Q) is a contradiction.

Definition

Two propositional forms are said to be equivalent if they have the
same truth value.
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Chapter 1. Logic and Proofs

§1.1 Propositions and Connectives

For propositions P, Q, R, we have the following:
a) P <~ (~P). (Double Negation Law)

} (Commutative Laws)

dJPv(QVvR)e(PvQ)v
PAQAR) (PAQ)A

PAQVR)«(PAQ) v (PAR)
Pv(QAaR)« (PvQ)A(PVR)

} (Associative Laws)

} (Distributive Laws)

h) ~(PAQ)e (~P)v(~Q)

} (De Morgan’s Laws)
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Chapter 1. Logic and Proofs
§1.1 Propositions and Connectives

We prove (g) for example, and the other cases can be shown in a
similar fashion. Using the truth table,

O
v}
s}

MMM — T >

Pv(QAR)

ae)
O
g

PvQ)A(PVR)

i B e B B B B o
e B e B B s B | )
i e e e B B B |
e e e B B B

e B B B B B |
e B e B B B B IS
e R B B B

we find that “P v (Q A R)" is equivalent to “(P v Q) A (P vR)". o
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Chapter 1. Logic and Proofs
§1.1 Propositions and Connectives

Definition

A denial of a proposition is any proposition equivalent to ~P.

e Rules for ~, A and v:
@ ~ is always applied to the smallest proposition following it.
@ A connects the smallest propositions surrounding it.

© v connects the smallest propositions surrounding it.

Example

Under the convention above, we have

Q@ ~Pv~Q e (~P) v (~Q).
OQPVQVR< (PvQ) vVR<Pv(QVR).
Q@ PA~Qv~R< [PA(~Q)] v (~R).

Q RAPASAQ<e [RAP)AS] AQ.

4
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Chapter 1. Logic and Proofs

§1.2 Conditionals and Biconditionals

Definition

For propositions P and Q, the conditional sentence P = Q is the
proposition “if P, then Q". Proposition P is called the antecedent
and Q is the consequence. The sentence P = Q is true if and only

if P is false or Q is true.

Remark:

In a conditional sentence, P and Q might not have connections. The
truth value of the sentence “P = Q" only depends on the truth value
of P and Q.
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Chapter 1. Logic and Proofs

§1.2 Conditionals and Biconditionals

Example

We would like to determine the truth value of the sentence “if x > §,

then x > 5". Let P denote the sentence “x > 8" and Q the sentence
“x> 5"

Q If P, Q are both true statements, then x > 8 which is (exactly
the same as P thus) true.

Q If P is false while Q is true, then 5 < x < 8 which is (exactly
the same as ~P A Q thus) true.

@ If P, Q are both false statements, then x < 5 which is (exactly
the same as ~Q thus) true.

Q It is not possible to have P true but Q false.

Ching-hsiao Cheng A##E MA-1015A



Chapter 1. Logic and Proofs

§1.2 Conditionals and Biconditionals

e How to read P = Q in English?
1. If P, then Q. 2. P is sufficient for Q. 3. P only if Q.
4. Q whenever P. 5. Q is necessary for P. 6. Q, if/when P.

Definition

Let P and Q be propositions.
© The converse of P = Q is Q = P.

@ The contrapositive of P = Q is ~Q = ~P.
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Chapter 1. Logic and Proofs

§1.2 Conditionals and Biconditionals

Example

We would like to determine the truth value, as well as the converse
and the contrapositive, of the sentence “if 7 is an integer, then 14
is even".

© Since that 7 is an integer is false, the implication “if 7 is an
integer, then 14 is even” is true.

@ The converse of the sentence is “if 14 is even, then 7 is an
integer” which is a false statement.

© The contrapositive of the sentence is “if 14 is not even, then 7 is
not an integer” which is a true statement since the antecedent
“14 is not even” is false.

By this example, we know that a sentence and its converse cannot
be equivalent.
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Chapter 1. Logic and Proofs

§1.2 Conditionals and Biconditionals

For propositions P and Q, the sentence P = Q is equivalent to its
contrapositive ~Q =~ P.

Using the truth table

P Q | P=Q| ~Q ~P | ~Q=~P
T T T F F T
T F F T F F
F T T F T T
F F T T T T

we conclude that the truth value of P = Q and ~Q =~P are the
same; thus they are equivalent sentences. o
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Chapter 1. Logic and Proofs

§1.2 Conditionals and Biconditionals

Definition

For propositions P and Q, the bi-conditional sentence P < Q is
the proposition “P if and only if Q". The sentence P < Q is true
exactly when P and Q have the same truth values. In other words,
P < Q is true if and only if P is equivalent to Q.

Remark: The notation < is a combination of = and its converse
<, so the notation seems to suggest that (P < Q) is equivalent to
(P = Q) A (Q=P). This is in fact true since

Pl Q|PeQ|P=Q| Q=P | (P=QAr(P=Q)
T | T T T T T
T|F F F T F
F | T F T F F
F F T T T T
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Chapter 1. Logic and Proofs

§1.2 Conditionals and Biconditionals

@ The proposition “2% = 8 if and only if 49 is a perfect square”
is true because both components are true.

o 22 . . . %
@ The proposition “m = — if and only if v/2 is a rational number
is also true (since both components are false).

© The proposition “6 + 1 = 7 if and only if Argentina is north
of the equator” is false because the truth values of the compo-
nents differ.

v
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Chapter 1. Logic and Proofs

§1.2 Conditionals and Biconditionals

Remark:

Definitions may be stated with the “if and only if” wording, but it
is also common practice to state a formal definition using the word
“if". For example, we could say that “a function fis continuous at

a number cif ---" leaving the “only if” part understood.

A teacher says “If you score 74% or higher on the next test, you will

pass the exam". Even though this is a conditional sentence, everyone
will interpret the meaning as a biconditional (since the teacher tries

to “define” how you can pass the exam).
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Chapter 1. Logic and Proofs

§1.2 Conditionals and Biconditionals

For propositions P, Q and R, we have the following:
(a) (P=Q) « (~PvQ),

(b) P=Q) < (P=Q) A (Q=P).
() ~P=Q) < (Pr~Q).
(d) ~PArQ) < (P=~Q).
() ~PArQ) & (Q=~P).
)

)

)

() P=(Q=R) &« (PAQ)=R.
(g) P=(QAR) & (P=Q)A(P=R).
(

h) (PvQ)=R « (P=R)A (Q=R).
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Chapter 1. Logic and Proofs

§1.2 Conditionals and Biconditionals

e How to read P < Q in English?
1. P if and only if Q. 2. P if, but only if, Q.
3. P implies Q, and conversely. 4. P is equivalent to Q.
5. P is necessary and sufficient for Q.

e Rules for ~, A, v, = and <: These connectives are always

applied in the order listed.

Q@ P=~QvR< Sisanabbr. for (P= [(~Q) vR]) < S.
Q@ Pv~Q< R=Sisanabbr. for [Pv (~Q)] < (R=9).

© P= Q= Risanabbr. for (P = Q)= R.
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Chapter 1. Logic and Proofs

§1.3 Quantified Statements

Definition

An open sentence is a sentence that contains variables. When P
is an open sentence with a variable x (or variables xi, -, x,), the
sentence is symbolized by P(x) (or P(x1,- -, xn))-

The truth set of an open sentence is the collection of variables
(from a certain universe) that may be substituted to make the open
sentence a true proposition. (i # P(x) % B e7#73 x 3% the
truth set of P(x))

Remark:
In general, an open sentence is not a proposition. It can be true

or false depending on the value of variables.
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Chapter 1. Logic and Proofs

§1.3 Quantified Statements

Let P(x) be the open sentence “x is a prime number between 5060
and 5090". In this open sentence, the universe is usually chosen
to be N, the natural number system, and the truth set of P(x) is
{5077,5081, 5087}.

Remark:

The truth set of an open sentence P(x) depends on the universe
where x belongs to. For example, suppose that P(x) is the open
sentence “x2 + 1 = 0" If the universe is R, then P(x) is false for
all x (in the universe). On the other hand, if the universe is C, the
complex plane, then P(x) is true when x = +i (which also implies
that the truth set of P(x) is {i, —i}).
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Chapter 1. Logic and Proofs

§1.3 Quantified Statements

With a universe X specified, two open sentences P(x) and Q(x) are

equivalent if they have the same truth set of all xe X.

The two sentences “3x+ 2 = 20" and “2x — 7 = 5" are equivalent

open sentences in any of the number system, such as N, Z, Q, R
and C.

The two sentences “x*> —1 > 0" and “(x < —1) v (x > 1)" are

equivalent open sentences in R.
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Chapter 1. Logic and Proofs

§1.3 Quantified Statements

Given an open sentence P(x), the first question that we should ask

ourself is “whether the truth set of P(x) is empty or not”.

Definition

The symbol 3 is called the existential quantifier. For an open

sentence P(x), the sentence (Ix)P(x) is read “there exists x such
that P(x)" or “for some x, P(x)". The sentence (Ix)P(x) is true if
the truth set of P(x) is non-empty.

Remark:
An open sentence P(x) does not have a truth value, but the quan-

tified sentence (Ix)P(x) does.
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Chapter 1. Logic and Proofs

§1.3 Quantified Statements

The quantified sentence (3 x)(x” — 12x* + 16x — 3 = 0) is true in

the universe of real numbers.

Example (Fermat number)

The quantified sentence (3 n)(2%" + 1 is a prime number) is true in

the universe of natural numbers.

v

Example (Fermat's last theorem)

The quantified sentence
@xyz )+ =2 An>3)

is true in the universe of integers, but is false in the universe of

natural numbers.

v

Ching-hsiao Cheng A##E MA-1015A




Chapter 1. Logic and Proofs

§1.3 Quantified Statements

Definition
The symbol V is called the universal quantifier. For an open sen-

tence P(x), the sentence (V x)P(x) is read “for all x, P(x)", "for
every x, P(x)" or “for every given x (in the universe), P(x)". The
sentence (V x)P(x) is true if the truth set of P(x) is the entire uni-

VErse.

| A\

Example
The quantified sentence (V n)(2%" + 1 is a prime number) is false in

the universe of natural numbers since

22° 11 = 641 x 6700417 .
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Chapter 1. Logic and Proofs
§1.3 Quantified Statements

In general, statements of the form “every element of the set A has
the property P” and “some element of the set A has property P"
may be symbolized as (V x € A)P(x) and (3 x € A)P(x), respective.
Moreover,
Q@ "All P(x) are Q(x)" (*73 L P s x $MB L Q or X & /%
P ¢ x 3% & Q) should be symbolized as
“(¥3)(P(x) = Q(x))"-
(See the next slide for the explanation!)
@ "“Some P(x) are Q(x)" (7 £/ & P hx+ B E Qor 3 &
x F pEi%s &P 4r Q) should be symbolized as

“3%)(P(9) A Q)"




Chapter 1. Logic and Proofs

§1.3 Quantified Statements

e Explanation of 1: Suppose that the truth set of P(x) is A and
the truth set of Q(x) is B. Then “All P(x) are Q(x)" implies that
A € B; that is, if xin A, then x in B. Therefore, by reading the

truth table
xeA | xeB| P(x) | Q(x) | P(x)=Q(x)
T T T T T
T | F T F F
F T F T T
F F F F T

we find that the truth set of the open sentence P(x) = Q(x) is the
whole universe since the second case (x € A)A ~ (x € B) cannot

happen.
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Chapter 1. Logic and Proofs

§1.3 Quantified Statements

@ The sentence “for every odd prime x less than 10, x* 4+ 4 is
prime” can be symbolized as

(¥ x)[(x is odd) A (x is prime) A (x < 10) = (x*+4 is prime)].

@ The sentence “for every rational number there is a larger inte-
ger” can be symbolized as

(VxeQ)[FzeZ)(z> x)].
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Chapter 1. Logic and Proofs

§1.3 Quantified Statements

@ The sentence “some functions defined at 0 are not continuous

at 0" can be symbolized as
(31)[(fis defined at 0) A (fis not continuous at 0)].

@ The sentence “some integers are even and some integers are

odd” can be symbolized as
(Ix)(x is even) A (Fy)(y is odd) .

© The sentence “some real numbers have a multiplicative inverse”
(7 2§43 32~ ~ %) can be symbolized as

@AxeR)[@yeR)(xy=1)].
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Chapter 1. Logic and Proofs

§1.3 Quantified Statements

To symbolized the sentence “any real numbers have an additive
inverse” (ix @ ﬁxfa’ﬂ’ﬁ 4v;2 F =), itis required that we combine
the use of the universal quantifier and the existential quantifier:

(VxeR)[AyeR)(x+y=0)].

This is in fact quite common in mathematical statement. Another
example is the sentence “some real number does not have a multi-
plicative inverse” (7 & F #iZ F 3z ¥ ~ %) which can be sym-
bolized by

(IxeR) ~ [(Elye R)(xy = 1)]
or simply

(AxeR)[(Vye R)(xy # 1)].
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Chapter 1. Logic and Proofs
§1.3 Quantified Statements

¢ Continuity of functions: By the definition of continuity and using

the logic symbol, fis continuous at a number c if

(Ve) (38) (Vx) [(|x— ] < 8) = (|f(x) — f()] < 5)1 .

-

Q(e.d)
P(e)=(36)Q(e.0)

@ The universe for the variables € and ¢ is the collection of positive

real numbers. Therefore, sometimes we write
(Ve>0)(3d> O)(Vx)[(|x— d <d)= (|f(x) — f(o)| < E)] .

@ The sentence  P(e) s always true for any € > 0.
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Chapter 1. Logic and Proofs
§1.3 Quantified Statements

¢ Continuity of functions: By the definition of continuity and using

the logic symbol, fis continuous at a number c if

(Ve) (38) (Vx) [(|x— ] < 8) = (|f(x) — f()] < 5)1 .

-

Q(e,9)

S J

P(e)=(36)Q(e.0)

@ The universe for the variables € and ¢ is the collection of positive

real numbers. Therefore, sometimes we write
(Ve>0)(3d> O)(Vx)[(|x— d <d)= (|f(x) — f(o)| < E)] .

@ The sentence (30)Q(g,d) is always true for any € > 0.
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Chapter 1. Logic and Proofs

§1.3 Quantified Statements

o Continuity of functions: By the definition of continuity and using

the logic symbol, fis continuous at a number c if

(Ve) (38) (Vx) [(|x— | < 8) = (|f(x) — f(d)] < 5)1 .

.

Q(e.0)
P(e)=(36)Q(e.0)

@ The sentence (36)Q(e,d) is always true for any € > 0.

© Suppose ¢ is a given positive number. Then the truth set of
Q(e, d) is non-empty which implies that “there is at least one

positive number ¢ making the sentence Q(e, d) true”.
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Chapter 1. Logic and Proofs

§1.3 Quantified Statements

Definition

Two quantified statement are equivalent in a given universe if they
have the same truth value in that universe. Two quantified sentences
are equivalent if they are equivalent in every universe.

| A\

Example
Consider quantified sentences “(V x)(x > 3)" and “(V x)(x = 4)".

© They are equivalent in the universe of integers because both
are false.

@ They are equivalent in the universe of natural numbers greater
than 10 because both are true.

© They are not equivalent in the universe X = [3.7, o0) of the real
line.

’
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Chapter 1. Logic and Proofs

§1.3 Quantified Statements

Theorem

If P(x) is an open sentence with variable x, then
QO ~ (Yx)P(x) is equivalent to (3 x) ~P(x).
Q@ ~(Ix)P(x) is equivalent to (¥ x) ~P(x).

Let X be the universe, and A be the truth set of P(x).
© The sentence (V x)P(x) is true if and only if A = X; hence
~ (Vx)P(x) is true if and only if A # X. The sentence (I x) ~
P(x) is true if and only if the truth set of ~P(x) is non-empty;
thus (3 x) ~P(x) is true if and only if A # X.
@ Using (a) and the double negation law,
~(3X)P(x) < ~ [~ ((V X) ~P(X))] < (Vx) ~P(x).
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Chapter 1. Logic and Proofs
§1.3 Quantified Statements

Q IfP(x,y,z) and Q(x,y,z) are open sentences with variables x,
Y, z, then ~ [(Vx)(3y)(V 2)(P(x, . 2) = Q(x.y,2))] is equi-
valent to (3x)(V y)(32) (P(x,y,2) A ~Q(x,y,2)).

Q IfP(xy,--- ,xq4) and Q(xy,--- ,x4) are open sentences with vari-
ables x1, x2, x3, X4, then

~[@x1) (VY x2) (3 x3)(V xa) (P(xa, -, xa) = Qlxa, -+, xa))]
is equivalent to

(Vx1)(3x2) (¥ x3) (3 xa) (P(x1, -+, xa) A ~Q(x1 xy)).

The corollary can be proved using the theorem in the previous page
and the fact that ~ (P = Q) < (PA~Q). o
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Chapter 1. Logic and Proofs
§1.3 Quantified Statements

e Discontinuity of functions:

A function fis continuous at c if and only if
(Ve>0)36>0)(Vx)[(|x— ¢ <8) = (|f(x) — f(c)| < )]
Therefore, fis not continuous at c if and only if
(Ae>0)(Vé>0)3x)[(]x—c <) » (|f(x) — f(0)| = ¢)] .
fEd i fhcr Y PG h- Bildke EFERE
X

I
FRHE (c—8,c+8) ¢ F x §i8 LX)~ F(O)
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Chapter 1. Logic and Proofs
§1.3 Quantified Statements

¢ Non-existence of limits:
A function f defined on an interval containing c, except possibly at
¢, is said to have a limit at ¢ (or lim f(x) exists) if and only if
FALeR)(Ve>0)36>0)(VX)((0< |x—d < &)= (|f(x) — L| <g)).
Therefore, f does not have a limit at c if

(VLeR)(Fe > 0)(Vd>0)3X)((0< |x—¢ <) A (|f(x) — L| = ¢)).
fadh c o Fecte2 F A B2 FHTE (P de) 7k
LEw oy dl- Bodee REELLEO IR R H
(c=dulcetd) ® 3 x §_RE|f(x)—L|>¢
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Chapter 1. Logic and Proofs

§1.3 Quantified Statements

Let P(x,y) be an open sentence with two variables x and y. Then
(V% 9)P(x,y) = (VX)[(Vy)P(x y)] -

Suppose that the universe of x and y are X and Y, respectively. We
note that

(V x,y)P(x,y) is true < the truth set of P(x,y) is X x Y

<> For every given x € X, the truth set of
P(x,y)is Y

< (VX)[(V9)P(xy)] 5

Ching-hsiao Cheng A##E MA-1015A



Chapter 1. Logic and Proofs

§1.3 Quantified Statements

Definition

The symbol 3! is called the unique existential quantifier. For
an open sentence P(x), then sentence (3!x)P(x) is read “there is a
unique x such that P(x)". The sentence (3!x)P(x) is true if the truth
set of P(x) has exactly one element.

If P(x) is an open sentence with variable x, then
QO (IXP(x) = (Ix)P(x).
Q@ (AIXNP(x) < [(ANPH))A((Vy)(V2)(P(y)AP(2) = y = 2))].

—~
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Chapter 1. Logic and Proofs

§1.4 Basic Proof Methods | (Direct Proof)

Mathematical Theorem: A statement that describes a pattern
or relationship among quantities or structures, usually of the form
P=qQ.

Proofs of a Theorem: Justifications of the truth of the theorem
that follows the principle of logic.

Lemma: A result that serves as a preliminary step to prove the main
theorem.

Axiom (= 3k): Some facts that are used to develop certain theory
and cannot be proved.

Undefined terms: Not everything can/have to be defined, and we
have to treat them as known.
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Chapter 1. Logic and Proofs

§1.4 Basic Proof Methods | (Direct Proof)

Remark:

@ To validate a conditional sentence P = Q, by definition you
only need to show that there is no chance that P is true but at
the same time Q is false. Therefore, you often show that if P
is true then Q is true, if Q is false then P is false or that P is
true and Q is false leads to a contradiction (always false).

@ Sometimes it is difficult to identify the antecedent of a math-
ematical theorem. Usually it is because the antecedent is too
trivial to be stated. For example, “\/2 is an irrational number”
is a mathematical theorem and it can be understood as “if you
know what an irrational number is, then 4/2 is an irrational
number”.

Ching-hsiao Cheng A##E MA-1015A



Chapter 1. Logic and Proofs

§1.4 Basic Proof Methods | (Direct Proof)

¢ General format of proving P = Q) directly:

Direct proof of P = Q
Proof.

Assume P. (¥ # %3 3 ;\Boik > 4 & 5 P p %)

Therefore, Q.
Thus, P = Q. o
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Chapter 1. Logic and Proofs

§1.4 Basic Proof Methods | (Direct Proof)

Basic Rules: In any proof at any time you may

@ state an axiom (by the axiom of ------ ), an assumption (as-
sume that ------ ), or a previously proved result (by the fact
that -+ --- )

@ state a sentence whose symbolic translation is a tautology (such
as classification 4" #f).

© state a sentence (or use a definition) equivalent to any state-
ment earlier in the proof.

@ use the modus ponens rule: after statements P and P = Q
appear in a proof, state Q.
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Chapter 1. Logic and Proofs

§1.4 Basic Proof Methods | (Direct Proof)

Prove that if x is odd, then x4 1 is even.

Proof.
Assume that x is an odd number.

Then x = 2k + 1 for some integer k;
thus x+1 = 2k+ 1+ 1 = 2(k+ 1) which shows that x+ 1 is a
multiple of 2.

Therefore, x+ 1 is even. o
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§1.4 Basic Proof Methods | (Direct Proof)

Let a, b, c be integers. If a divides b and b divides ¢, then a divides
C.

Let a, b, c be integers.

Assume that a divides b and b divides c.
Then b= am for some integer m, and ¢ = bn for some integer n;

thus ¢ = (am)n = a(mn) which shows that c is an multiple of a.

Therefore, a divides c. o

Ching-hsiao Cheng A##E MA-1015A



§1.4 Basic Proof Methods | (Direct Proof)

Let a, b, c be integers. If a divides b and b divides ¢, then a divides
C.

Let a, b, c be integers.

Assume that a divides b. Then b = am for some integer m.
Assume that b divides c. Then ¢ = bn for some integer n.

Thus, ¢ = (am)n = a(mn) which shows that c is an multiple of a.

Therefore, a divides c. o

v
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Chapter 1. Logic and Proofs

§1.4 Basic Proof Methods | (Direct Proof)

Show that (Vxe R)(x2 +1 > 0).

332 P = Q -+ 4| : Show that if xe R, then x> +1 > 0.
Proof

Assume that x is a real number.

Then either x> 0, x=0 or x < 0.
Q If x>0, then 2 = x- x> 0.
Q If x=0, then X2 = 0.
Q If x< 0, then (—x) > 0; thus x*> = (—x) - (—x) > 0.
In either cases, x2 = 0; thus x> + 1 > 0.
Therefore, X2 + 1 > 0. o
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Chapter 1. Logic and Proofs

§1.4 Basic Proof Methods | (Direct Proof)

Show that (VE>O)<#{neNH >€} <oo).

#wF= P = Q ¢ 3] : Show that if ¢ > 0, then the collection
{n € N‘ % > 5} has only finitely many elements.

Proof.

|

Assume that ¢ > 0. Then = < 0.
Note that {n € N‘ % >5} = {n e N ’ n< é} which is the collection

1
of natural numbers less than =. Therefore,
g

1
#{neN’l>€}<7<oo. o
n €
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Chapter 1. Logic and Proofs

§1.4 Basic Proof Methods | (Direct Proof)

Show that (Vxe R)(Iye R)(x+ y=0).

#WwF= P = Q ¢ 3| : Show that “if xe R, then the truth set
of the open sentence P(y) = (x+ y = 0) is non-empty” or “if
x € R, then there exists y € R such that x+ y=0".

Proof.
Assume that x is a real number.

Then y = —x is a real number and x+ y = 0.

Thus, there exists y € R such that x+ y = 0.

Therefore, for each x € R, there exists y € R such that x+ y= 0. o

V.
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Chapter 1. Logic and Proofs

§1.4 Basic Proof Methods | (Direct Proof)

Show that (Vxe R)(Iye R)(x+ y=0).

#WwF= P = Q ¢ 3| : Show that “if xe R, then the truth set
of the open sentence P(y) = (x+ y = 0) is non-empty” or “if
x € R, then there exists y € R such that x+ y = 0"

Proof.
Let x be a real number.

Then y = —x is a real number and x+ y = 0.

Thus, there exists y € R such that x+ y = 0.

Therefore, for each x € R, there exists y € R such that x+ y= 0. o

V.
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Chapter 1. Logic and Proofs

§1.4 Basic Proof Methods | (Direct Proof)

Show that (Vxe R)(Iye R)(x+ y=0).

#WwF= P = Q ¢ 3| : Show that “if xe R, then the truth set
of the open sentence P(y) = (x+ y = 0) is non-empty” or “if
x € R, then there exists y € R such that x+ y = 0"

Proof.
Let x€ R be given.

Then y = —x is a real number and x+ y = 0.

Thus, there exists y € R such that x+ y = 0.

Therefore, for each x € R, there exists y € R such that x+ y= 0. o

V.
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Chapter 1. Logic and Proofs

§1.5 Basic Proof Methods Il (Indirect Proof)

Recall that a conditional sentence is equivalent to its contrapositive;
thatis, (P = Q) < (~Q=~P).

¢ General format of proving P = () by contraposition:

Proof of P = Q by Contraposition
Proof.

Assume ~Q. (F * X33 {2 & E 5 ~Q p 3)

Therefore, ~P.
Thus, ~Q =~P.
Therefore, P = Q. o
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Chapter 1. Logic and Proofs

§1.5 Basic Proof Methods Il (Indirect Proof)

Let m be an integer. Show that if m? is even, then m is even.

Proof.
Assume (the contrary) that m is odd.

Then m = 2k + 1 for some integer k.
Therefore, m* = (2k+1)? = 4k> + 4k+ 1 = 2(2k*> + 2k) + 1 which
is an odd number.

Thus, if mis odd, then m? is odd.

Therefore, if m? is even, then m is even. o
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Chapter 1. Logic and Proofs

§1.5 Basic Proof Methods Il (Indirect Proof)

Let x and y be real numbers such that x < 2y. Show that if 7xy <
3x% + 2y2, then 3x < y.

Let x and y be real numbers such that x < 2y.

Assume the contrary that 3x > y.

Then 2y — x> 0 and 3x— y > 0.

Therefore, (2y — x)(3x —y) > 0.

Expanding the expression, we find that 7xy — 3x*> — 2)? > 0.
Therefore, Txy > 3x* + 2y°.

Thus, if 3x > y, then Txy > 3x% + 2y

Therefore, if 7Txy < 3x> + 2)2, then 3x < y. o
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Chapter 1. Logic and Proofs

§1.5 Basic Proof Methods Il (Indirect Proof)

e General format of proving P = () by contradiction:

Proof of P = QQ by Contradiction

Proof.

Assume P and ~Q. (F * (x5 3 4B > A £ &5 P& ~Q
S f)

Therefore, ~P.
Thus, PA ~P, a contradiction.
Therefore, P = Q. o
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Chapter 1. Logic and Proofs

§1.5 Basic Proof Methods Il (Indirect Proof)

e General format of proving P = () by contradiction:

Proof of P = QQ by Contradiction

Proof.

Assume P and ~Q. (F * (x5 3 4B > A £ &5 P& ~Q
S f)

Therefore, ~P, a contradition.
Therefore, P = Q. o

Ching-hsiao Cheng A##E MA-1015A



Chapter 1. Logic and Proofs

§1.5 Basic Proof Methods Il (Indirect Proof)

As mentioned before, there are cases that the antecedent of a the-
orem is unclear. This kind of theorems are of the form Q.

e General format of proving Q by contradiction:

Proof of ) by Contradiction

Proof.

Asume ~Q. (7 5 SR LE LG ~Q 1 )
m

: i A%)
Therefore, P.

(4 PA~Q & {78484 7)
Therefore, ~P.
Thus, PA ~P, a contradiction.
Therefore, P = Q. o

Ching-hsiao Cheng A##E MA-1015A




Chapter 1. Logic and Proofs

§1.5 Basic Proof Methods Il (Indirect Proof)

Show that 4/2 is an irrational number.

Proof.

Assume the contrary that 4/2 is a rational number.

Then /2 = g for some positive integers p, g satisfying (p, q) = 1.
Thus, ¢? is an even number since g = 2p>.

By previous example, g is even; thus g = 2k for some integer k.

2
Then p? is an even number since p?> = % = 2K2.
The previous example again implies that p is an even number.
Therefore, (p, q) # 1, a contradiction.

Therefore, v/2 is an irrational number. )
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Chapter 1. Logic and Proofs

§1.5 Basic Proof Methods Il (Indirect Proof)

Show that the collection of primes is infinite.

Proof.
Assume the contrary that there are only finitely many primes.

Suppose that p; < ps < -+ < pi are all the prime numbers.

Let n=pips---px+ 1. Then n> p, and n is not a prime.
Therefore, n has a prime divisor (& F#c) g; that is, q is a prime
and g|n.

Since g is a prime, g = p; for some 1 < j < k.

However, q = p; does not divide n, a contradiction.

Therefore, the collection of primes is infinite. o
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Chapter 1. Logic and Proofs

§1.5 Basic Proof Methods Il (Indirect Proof)

There are n people (n = 2) at a party, some of whom are friends.
Prove that there exists someone at the party who is friends with the
same number of party-goers as another person.

PR EPA-BEEY TG A BAAE Y PP Kk
— 5 o

Proof.

Assume the contrary that no two party-goers have the same number
of friends. Note that the number of friends should range from 0
to n — 1; thus by the assumption that no two party-goers have the
same number of friends, there must be one party-goer who has no
friend, while there must be one party-goer who has n — 1 friends.
This is impossible because the one who has n— 1 friends is a friend
of the one who has no friend. =

v
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Chapter 1. Logic and Proofs

§1.5 Basic Proof Methods Il (Indirect Proof)

Some mathematical theorems are of the form P < Q. As explained
before, this means P = Q and Q = P; thus one should establish
these two implication separately.

¢ General format of proving P < Q:

Proof of P < Q)

Proof.

(i) Show that P = Q using the methods mentioned above.

(ii) Show that Q = P using the methods mentioned above.
Therefore, P < Q. o

Ching-hsiao Cheng A##E MA-1015A



Chapter 1. Logic and Proofs

§1.5 Basic Proof Methods Il (Indirect Proof)

Let m, n be integers. Show that m and n have the same parity (F
+ F 18) if and only if m?® + n? is even.

(=) If m and n are both even, then m = 2k and n = 2¢ for some
integers k and £. Therefore, m* + n* = 2(2k* + 2¢?) which
is even. If m and n are both odd, then m = 2k + 1 and

n = 2¢ + 1 for some integers k and £. Therefore, m*> + n?> =
2(2k2 + 202 + 2k + 20 + 1) which is even. Therefore, if m and

n have the same parity, m> 4+ n? is even. o

v
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Chapter 1. Logic and Proofs

§1.5 Basic Proof Methods Il (Indirect Proof)

Let m, n be integers. Show that m and n have the same parity (F
+ F 18) if and only if m?® + n? is even.

(<) Assume the contrary that there are m and n having opposite

parity. W.L.O.G. we can assume that m is even and n is odd.
Then m = 2k and n = 2¢ + 1 for some integers k and /.
Therefore, m? + n? = 2(2k? +2¢% +2¢) + 1 which is odd. Thus,
if m and n have opposite parity, then m?+n? is odd. Therefore,

if m?> + n? is even, then m and n have the same parity. o

v
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Chapter 1. Logic and Proofs

§1.5 Basic Proof Methods Il (Indirect Proof)

Remark:

@ Sometimes it requires intermediate equivalent propositions to

show P < Q; that is, one might establish
PeR)ARieR) A ARi1eR) AR, Q)
to prove P < Q.

@ Often times it is more efficient to show a theorem of the form
“Py, Py, ---, P, are equivalent” (which means Py, Py, -+,
P, have the same truth value) by showing that P; = Py,
Py = P3, ---, and P, = P;. In other words, one uses the
following relation

[(Pl <SP A(PaePs)a--A(Ppr < P,,)}
= [(Pl =Py)APa=Ps)A--- A (P,= Pl)}
to prove this kind of theorems.
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Chapter 1. Logic and Proofs

§1.5 Basic Proof Methods Il (Indirect Proof)

Let x, y be non-negative real numbers such that x — 4y < y — 3x.
Prove that if 3x > 2y, then 12x* 4 10y? < 24xy.

(Direct Proof): Let x,y be non-negative real numbers such that

x — 4y < y — 3x. Suppose that 3x > 2y. Then 4x — 5y < 0 and
3x — 2y > 0. Therefore,

0 > (4x— 5y)(3x — 2y) = 12x% + 10y — 23xy

or equivalently, 12x*> +10y? < 23xy. Since x, y are non-negative real
numbers, 23xy < 24xy; thus 12x% + 10y? < 24xy. o

v
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Chapter 1. Logic and Proofs

§1.5 Basic Proof Methods Il (Indirect Proof)

Let x, y be non-negative real numbers such that x — 4y < y — 3x.
Prove that if 3x > 2y, then 12x* 4 10y? < 24xy.

(Proof by Contraposition): Let x, y be non-negative real numbers
such that x—4y < y— 3x. Assume the contrary that 12x% 4 10y >

24xy. Since x, y are non-negative real numbers,

12x% + 10y* > 24xy > 23xy;

thus (4x — 5y)(3x — 2y) = 12x* + 10y? — 23xy = 0. Since x — 4y <
y — 3x, we find that 4x — 5y < 0; thus 3x — 2y < 0. o

v
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Chapter 1. Logic and Proofs

§1.5 Basic Proof Methods Il (Indirect Proof)

Let x, y be non-negative real numbers such that x — 4y < y — 3x.
Prove that if 3x > 2y, then 12x* 4 10)? < 24xy.

(Proof by Contradiction): Let x, y be non-negative real numbers
such that x—4y < y—3x. Assume that 3x > 2y and 12x% 4 10y >
24xy. Then 4x — 5y < 0 and 3x — 2y > 0; thus

0 > (4x—5y)(3x—2y) = 12x*+8y? —23xy > 24xy—23xy = xy > 0,

where the last inequality follows from the fact that x, y are non-

negative real numbers. Thus, we reach a contradiction 0 > 0. o

v
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Chapter 1. Logic and Proofs
§1.6 Proofs Involving Quantifiers

e General format of proving (V x)P(x) directly:
Note that to establish (V x)P(x) is the same as proving that

“if x is in the universe, then P(x) is true".

Direct Proof of (V x)P(x)

Proof.

Let x be given in the universe. (¥ * %% = jt P~k o 4 & A 5
F PR

Hence P(x) is true.

Therefore, (V x)P(x) is true. o
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Chapter 1. Logic and Proofs
§1.6 Proofs Involving Quantifiers

¢ General format of proving (V x)P(x) by contradiction:

To prove “if x is in the universe, then P(x) is true" by contradiction
is to show that “an x in the universe so that P(x) is false leads to a

contradiction”.

Proof of (V x)P(x) by contradiction
Proof.

Assume (the contrary) that ~ (¥ x)P(x).
Then (3 x) ~P(x).

Let x be an element in the universe such that ~P(x).

Therefore, QA ~Q, a contradiction.
Thus (3x) ~P(x) is false, so (V x)P(x) is true. o
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Chapter 1. Logic and Proofs
§1.6 Proofs Involving Quantifiers

¢ General format of proving (V x)P(x) by contradiction:

To prove “if x is in the universe, then P(x) is true" by contradiction
is to show that “an x in the universe so that P(x) is false leads to a

contradiction”.

Proof of (V x)P(x) by contradiction
Proof.

Assume (the contrary) that ~{¥>3R0H4.
Fhen (Ix) ~P(x).
Let x be an element in the universe such that ~P(x).

Therefore, QA ~Q, a contradiction.
Thus (3x) ~P(x) is false, so (V x)P(x) is true. o
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Chapter 1. Logic and Proofs
§1.6 Proofs Involving Quantifiers

Show that for all xe (O, g) sin x + cos x > 1.

Proof.
Assume that there exists x € (0,7/2) such that sinx + cosx < 1.
Then 0 < sin x + cos x < 1; thus

0 < (sinx+cosx)? < 1.
Expanding the square and using the identity sin® x + cos®> x = 1, we

find that
0<1+2sinxcosx<1

which shows sin xcos x < 0. On the other hand, since x e (0,7/2),
we have sinx > 0 and cosx > 0 so that sinxcosx > 0, a contra-
diction. Therefore, sin x + cos x > 1 for all xe (0,7/2). o
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Chapter 1. Logic and Proofs
§1.6 Proofs Involving Quantifiers

e General format of proving (3 x)P(x) directly: Method 1.

The most straight forward way to show that (3 x)P(x) is to give a
precise x in the universe and show that P(x) is true; however, this
usually requires that you makeq some effort to find out which x suits
this requirement.

Constructive Proof of (3 x)P(x)
Proof.
Specify one particular element a.

If necessary, verify that a is in the universe.

Therefore, P(a) is true.
Thus (3x)P(x) is true. a
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Chapter 1. Logic and Proofs
§1.6 Proofs Involving Quantifiers

Show that between two different rational numbers there is a rational
number.

Let a, b be rational numbers and a < b. Let c = a; b Then ce Q
and a < c< b.

Show that there exists a natural number whose fourth power is the
sum of other three fourth power.

20615693 is one such number because it is a natural number and

20615673* = 2682440* + 1536539* + 18796760 . o
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Chapter 1. Logic and Proofs
§1.6 Proofs Involving Quantifiers

e General format of proving (3 x)P(x) directly: Method 2.

To show (3 x)P(x), often times it is almost impossible to provide a
precise x so that P(x) is true. Proving (3 x)P(x) directly (not proving
by contradiction) then usually requires a lot of abstract steps.

Non-Constructive Proof of (3 x)P(x)
Proof.

Therefore, P(a) is true.
Thus (3 x)P(x) is true. o
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Chapter 1. Logic and Proofs
§1.6 Proofs Involving Quantifiers

Let f: [0,1] — [0, 1] be continuous. Show that
(Axe[0,1])(x=f(x).

Q If £(0) =0 or f(1) =1, then (Ax€ [0,1])(x = f(x)).

@ If f(0) # 0 and f(1) # 1, then 0 < £(0),f(1) < 1.
Define g: [0,1] — R by g(x) = x— f(x). Then g is continuous
on [0,1]. Moreover, g(0) < 0 and g(1) > 0. Thus, the Inter-
mediate Value Theorem implies that there exists x such that

0 < x <1 and g(x) = 0 (which is the same as x = f(x)).

In either cases, there exists x € [0, 1] such that x = f(x). o

Ching-hsiao Cheng A##E MA-1015A




Chapter 1. Logic and Proofs
§1.6 Proofs Involving Quantifiers

e General format of proving (3 x)P(x) by contradiction:

Proof of (3 x)P(x) by contradiction
Proof.

Suppose the contrary that ~ (3 x)P(x).
Then (V x) ~P(x).

Therefore, QA ~Q, a contradiction.
Thus (3 x)P(x) is true. o
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Chapter 1. Logic and Proofs
§1.6 Proofs Involving Quantifiers

Let S be a set of 6 positive integers, each less than or equal to 10.

Prove that there exists a pair of integers in S whose sum is 11.

Suppose the contrary that every pair of integers in S has a sum

different from 11. Then S contains at most one element from each
of the sets {1, 10}, {2,9}, {3,8}, {4,7} and {5,6}. Thus, S contains
at most 5 elements, a contradiction. We conclude that S contains

a pair of numbers whose sum in 11. o

v
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Chapter 1. Logic and Proofs
§1.6 Proofs Involving Quantifiers

¢ General format of proving (3 !x)P(x):

Proof of (3!x)P(x)
Proof.

(i) Prove that (3x)P(x) is true using the methods mentioned
above.

(i) Prove that (Vy)(Y2)[(P(y) A P(2)) = (y = 2)]:
Assume that y and z are elements in the universe such that
P(y) and P(z) are true.

Therefore, y = z.
From (i) and (ii) we conclude that (3 !x)P(x) is true. o
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Chapter 1. Logic and Proofs
§1.6 Proofs Involving Quantifiers

Prove that every non-zero real number has a unique multiplicative
inverse.

Proof.
Let x be a non-zero real number.

Q Let y= )% Since x # 0, y is a real number. Moreover, xy = 1;
thus GyeR)(xy=1).

@ Suppose that y and z are real numbers such that xy = xz = 1.
Then x(y — z) = xy — xz= 0. By the fact that x # 0, we must
have y = z.

Therefore, (Vx# 0)(3!y)(xy = 1). o
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Chapter 1. Logic and Proofs

§1.6 Proofs Involving Quantifiers

Some manipulations of quantifiers that permit valid deduc-

tions:
(VX)(Vy)P(xy) < (Vy)(VX)P(xy), (1a)
FXEY)P(xy) < (y)BXP(xy), (1b)
(VX)P(x) v ( (X):, (V) [P(x) v Q)] (1c)
(V) [P(x ()] = [(V0P(x) = (Y9Q()],  (1d)
(V9[P() A QE] = [(VX)P(9) A (V0Q(X)], (le)
(HX)(Vy) (xy) = (VY)EX)P(xy). (1f)
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Chapter 1. Logic and Proofs
§1.6 Proofs Involving Quantifiers

Counter-examples for the non-equivalence in (1c), (1d), (1f):

@ the “if" direction in (1c): Let the universe be all the integers,
P(x) be the statement “x is an even number” and Q(x) be the
statement “x is an odd number”. Then clearly (Vx)[P(x) v
Q(x)] but we do not have (¥ x)P(x) v (Vx)Q(x).

@ the “if" direction in (1d): Let the universe be all the animals,
P(x) be the statement “x has wings” and Q(x) be the state-
ment “x is a bird”. Then clearly the implication [(V x)P(x) =
(V x)Q(x)] is true (since the antecedent is false) while the state-
ment (V x) [P(x) = Q(x)] is false.

© the “if" direction in (1f): Let the universe be all the non-
negative real numbers, and P(x, y) be the statement “y = x*".
Clearly (¥ y)(3x)P(x, y) but we do not have (3 x)(V y)P(x,y).
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Chapter 1. Logic and Proofs
§1.7 Strategies for Constructing Proofs

Summary of strategies you should try when you begin to write a
proof:

© Understand the statement to be proved: make sure you

know the definitions of all terms that appear in the statement.

O ldentify the assumption(s) and the conclusion, and deter-

mine the logical form of the statement.

© Look for the key ideas: Ask yourself what is needed to reach
the conclusion. Find relationships among the terms, the equa-
tions, and formulas involved. Recall known facts and previous

results about the antecedent and consequence.
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Chapter 1. Logic and Proofs

§1.7 Strategies for Constructing Proofs

Proof of (P = Q1 v Q2): Note that
P=QvQ) = [(Pr~Q)= Q)

If (x,y) is inside the circle (x — 6)% + (y — 3)3 = 8, then x > 4 or
y>1.

Suppose that (x, y) is inside the circle (x — 6)? + (y — 3)? = 8 and

x < 4. Then (x—6)? + (y—3)? < 8 and 6 — x = 2. Therefore,
(y—3)2<8-(6-x2<8—-4=4

which implies that |y — 3| < 2; thus —2 < y — 3 < 2 which further

shows 1 < y < 5. o
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Chapter 1. Logic and Proofs

§1.8 Proofs from Number Theory

Theorem (The Division Algorithm)
For all integers a and b, with a # 0, there exist unique integer q and

r such that b= aq+rand 0 < r < |a|.

@ The integer a is the divisor (‘,f #), bis the divident (#}t“ﬁ% #),
q is the quotient (7 ), and r is the remainder (4 ¥#k).

@ ais said to divide b if b = aq for some integer q.

© A common divisor (2> F]#ik) of nonzero integers a and b is an

integer that divides both a and b.
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Chapter 1. Logic and Proofs

§1.8 Proofs from Number Theory

Let a and b be non-zero integers. We say the integer d is the great-
est common divisor (gcd) of a and b, and write d = ged(a, b), if

@ dis a common divisor of a and b.

@ every common divisor ¢ of a and b is not greater than d.

Let a and b be non-zero integers. The gcd of a and b is the smallest
positive linear combination of a and b; that is,

ged(a, b) = min{am+ bn|am+bn >0, m,neZ}.

Let d = am + bn be the smallest positive linear combination of a
and b. We show that d satisfies (1) and (2) in the definition of the
greatest common divisor. o
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Chapter 1. Logic and Proofs

§1.8 Proofs from Number Theory

Proof (Cont'd).

O First we show that d divides a. By the Division Algorithm,
there exist integers g and r such that a = dg + r, where 0 <
r<d. Then

r=a—dq=a— (am+ bn)q=a(l — m)+ b(—nq);
thus r is a linear combination of a and b. Since 0 < r < d
and d is the smallest positive linear combination, we must have
r= 0. Therefore, a = dqg; thus d divides a. Similarly, d divides
b (replacing a by b in the argument above); thus d is a common
divisor of a and b.

© Next we show that all common divisors of a and b is not
greater than d. Let ¢ be a common divisor of a and b. Then
c divides d since d = am + bn. Therefore, c < d.

By (1) and (2), we find that d = ged(a, b). o
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Chapter 1. Logic and Proofs

§1.8 Proofs from Number Theory

Theorem (Euclid's Algorithm)
Let a and b be positive integers with a < b. Then there are two

lists of positive integers qi, qa, -+, Gk—1, Gk, Qks1 and ry, ry, - - -
rk—1, rk, r+1 such that

’

o a>nrn>rn>-:>fr_1>r> e =0.

Q@ b=agi+n, a=ng+r, rn=mnqg+tr, ------
Mk—3 = rk—2qk—1 + rk—1, ,
rk—1 = rkQr+1 (that is, rip1 = 0).

Furthermore, gcd(a, b) = ry, the last non-zero remainder in the list.
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Chapter 1. Logic and Proofs

§1.8 Proofs from Number Theory

Theorem (¥ 48 %% ;2 )

Let a and b be positive integers with a < b. Then there are two
lists of positive integers qi, q2, **, Gk—1, Gk, Gks1 and ry, ry, -+
Mk—1, Ik, rk+1 such that

’

o a>nrn>rn>-:>fr_1>r> e =0.

Q@ b=agi+n, a=ng+r, rn=mnqg+tr, ------
Mk—3 = rk—2qk—1 + rk—1, ,
rk—1 = rkQr+1 (that is, rip1 = 0).

Furthermore, gcd(a, b) = ry, the last non-zero remainder in the list.
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Chapter 1. Logic and Proofs

§1.8 Proofs from Number Theory

Proof of Euclid's Algorithm.
Let a and b be positive integers with a < b. By the Division Al-

gorithm, there exists positive integer g; and non-negative integer r
such that b=agq1+n and 0 < n < a. If B = 0, the lists terminate;
otherwise, for 0 < r; < a, there exists positive integer go and non-
negative integer rp suchthat a= rnga+rand0< n < n. If n =0,
the lists terminate; otherwise, for 0 < rn < ri, there exists positive

integer g3 and non-negative integer r3 such that r, = rnq3 + r3 and

0<n3<nm. o
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Chapter 1. Logic and Proofs

§1.8 Proofs from Number Theory

Proof of Euclid's Algorithm (Cont’d).
Continuing in this fashion, we obtain a strictly decreasing sequence
of non-negative integers ry, ro, r3,---. This lists must end, so there
is an integer k such that rg;; = 0. Thus we have
r=a>rn>n>-->rn>rn =0,
ri—1 = rigj+1 + i1 forall 1 < j <k,
b=rqi+nr.
We now show that ry = d = ged(a, b).
© The remainder ri divides ry_1 since rx_1 = rkqesr1- Also, ry
divides r,_o since
r—2 = 19k + rk = NeQis19k + e = n( Qi1 + 1) .
Therefore, by the fact that r;_1 = rjqjy1+rj4q forall 1 < j <k,
we find that r, divides r; for all 0 < j < k— 1. g
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Chapter 1. Logic and Proofs

§1.8 Proofs from Number Theory

Proof of Euclid's Algorithm (Cont’d).
Continuing in this fashion, we obtain a strictly decreasing sequence
of non-negative integers ry, ro, r3,---. This lists must end, so there
is an integer k such that rg;; = 0. Thus we have
r=a>rn>n>-->rn>rn =0,
ri—1 = rigj+1 + i1 forall 1 < j <k,
b=rqi+nr.
We now show that ry = d = ged(a, b).
© The remainder ri divides ry_1 since rx_1 = rkqesr1- Also, ry
divides r,_o since
r—2 = 19k + rk = NeQis19k + e = n( Qi1 + 1) .
Therefore, ry divides linear combinations of r;; thus ry divides
a (which is ry) and b (which is rpq; + r1). o
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Chapter 1. Logic and Proofs

§1.8 Proofs from Number Theory

Proof of Euclid's Algorithm (Cont’d).

Continuing in this fashion, we obtain a strictly decreasing sequence
of non-negative integers ry, ro, r3,---. This lists must end, so there

is an integer k such that rg;; = 0. Thus we have
r=a>rn>n>-->rn>rn =0,
ri—1 = rigj+1 + i1 forall 1 < j <k,
b=rqi+nr.
We now show that ry = d = ged(a, b).
@ On the other hand, d divides r; since n = b— ag;. Also, d also
divides ry since
rpn=rn—ag=b—aq —age=b—al(q1 + q2).
Therefore, by the fact that rj 1 = ri_1 —rjqj4q forall 1 < j <k,
we find that d divides ry for all 0 < j < k. 5
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Chapter 1. Logic and Proofs

§1.8 Proofs from Number Theory

Proof of Euclid's Algorithm (Cont’d).

By (1), rx is a common divisor of a and b. By (2), the greatest
common divisor of a and b must divide ry; thus we conclude that

re = ged(a, b). o

| A\

Example
Using Euclid’s algorithm to compute the greatest common divisor

of 12 and 32:
32=12x2+8,
12=8x1+4,
=4x2+0.

Therefore, 4 = ged(12,32). Moreover, by working backward,
4=12-8x1=12—-(32-12x2)x1=12x3+32x (—1).
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Chapter 1. Logic and Proofs

§1.8 Proofs from Number Theory

We say that non-zero integers a and b are relatively prime (3 %)
or coprime if ged(a, b) = 1.

Lemma (Euclid’'s Lemma)

Let a, b and p be integers. If p is a prime and p divides ab, then p

divides a or p divides b.

Let a, b be integers, and p be a prime. Suppose that p divides
ab, and p does not divides a. Then gcd(p, a) = 1; thus there exist
integers m and n such that 1 = am+ pn. Therefore, b = abm+ apn.

Since p divides ab, we conclude that p divides b (since b is a linear

combination of ab and p). o
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Chapter 1. Logic and Proofs

§1.8 Proofs from Number Theory

Remark: The same argument of showing Euclid’'s Lemma can be
applied to shown a more general case:

Let a, b, p be integers such that p divides ab.
If gcd(a, p) =1, then p divides b.
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Chapter 2. Sets and Induction
§2.1 Basic Concepts of Set Theory
§2.2 Set Operations
§2.3 Indexed Families of Sets
§2.4 Mathematical Induction
§2.5 Equivalence Forms of Induction

§2.6 Principles of Counting
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Chapter 2. Sets and Induction
§2.1 Basic Concepts of Set Theory

Definition

A set is a collection of objects called elements or members of the
set. To denote a set, we make a complete list {xi,x2, -+ ,xn} or
use the notation
{x: P(X)} or {X‘P(X)},

where the sentence P(x) describes the property that defines the set
(the set {x|P(x)} is in fact the truth set of the open sentence P(x)).
A set A is said to be a subset of S if every member of A is also a
member of S. We write x € A (or A contains x) if x is a member
of A, write x ¢ A if x is not a member of A, and write AZ S (or S
includes A) if A is a subset of S. The empty set, denoted ¢, is the

set with no member.
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Chapter 2. Sets and Induction
§2.1 Basic Concepts of Set Theory

The set A={1,3,5,7,9,11,13} may also be written as
{x\xe N, x is odd, and x < 14} or {xe N|xis odd, and x < 14}.

Remark:
© Beware of the distinction between “is an element of” and "is
a subset of”. For example, let A = {1,{2,4},{5},8}. Then
4¢ A {5}eA {1,{5}} = Aand {{5}} < A, but {5} ¢ A.
@ Not all open sentences P(x) can be used to defined sets. For
example, P(x) = “xis a set” is not a valid open sentence to
define sets for otherwise it will lead to the construction of a set

which violates the axiom of regularity.
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Chapter 2. Sets and Induction
§2.1 Basic Concepts of Set Theory

e Direct proof of Ac B: (Vx)[(xe A) = (xe B)].

Direct proof of Ac B
Proof.

Let x be an element in A.

Thus, xe B.
Therefore, A < B. o
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Chapter 2. Sets and Induction
§2.1 Basic Concepts of Set Theory

¢ Proof of A B by contraposition: ~(xe B) = ~(x€ A).

Proof of A < B by contraposiction
Proof.
Let x be an element.

Suppose that x ¢ B; that is, x is not an element of B.

Thus, x¢ A.
Therefore, A € B. o
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Chapter 2. Sets and Induction
§2.1 Basic Concepts of Set Theory

¢ Proof of A B by contraposition: ~(xe B) = ~(x€ A).

Proof of A < B by contraposiction
Proof.

Let x be an element which does not belong to B.

Thus, x¢ A.
Therefore, A € B. o
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Chapter 2. Sets and Induction
§2.1 Basic Concepts of Set Theory

e Proof of A < B by contradiction: ~(3x)[(xe A)a~(x€ B)|.

Proof of A < B by contradiction
Proof.
Assume that there exists x€ A but x¢ B.

Thus, PA ~P, a contradiction.
Therefore, A < B. o
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Chapter 2. Sets and Induction
§2.1 Basic Concepts of Set Theory

© For every set A, @ < A.
@Q For every set A, AC A.
© For all sets A,B and C, if A< B and B< C, then Ac C.

© Note that since there is no element in ¢, the open sentence
P(x) = [(x € &) = (x € A)] is always true (since the an-

tecedent (x € () is always false) for all x.
@ This follows from that the conditional sentence P = P is a
tautology (always true).
© This follows from that
[(P=Q) A (Q=R)] = (P=R). o
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Chapter 2. Sets and Induction
§2.1 Basic Concepts of Set Theory

Definition

Two sets A and B are said to be equal, denoted by A = B, if
(Vx)(xe A< xe B); thatis (A< B) A (B< A). A set Bis said
to be a proper subset of a set A, denoted by B< A, if B< A but
A# B

e Proof of A= B:

Two-part proof of A=B

Proof.

(i) Prove that A < B (by any method.)

(ii) Prove that B < A (by any method).
Therefore, A = B. o
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Chapter 2. Sets and Induction
§2.1 Basic Concepts of Set Theory
If A and B are sets with no elements, then A = B.

Let A, B be set. If A has no element, then A = F; thus by the fact
that empty set is a subset of any set, A < B. Similarly, if B has no
element, then B < A. o

For any sets A and B, if A< B and A # &, then B # (.

Let A, B besets, A< B, and A # . Then there is an element
x such that x € A. By the assumption that A € B, we must have
x € B. Therefore, B # . o
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Chapter 2. Sets and Induction
§2.1 Basic Concepts of Set Theory

e Venn diagrams:
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Chapter 2. Sets and Induction
§2.1 Basic Concepts of Set Theory

Definition

Let A be a set. The power set of A, denoted by P(A) or 24 is the
colloection of all subsets of A. In other words, P(A) = {B| B < A}.

Example
If A= {a, b,c, d}, then

P(A) = {@, {a}, {b}, {c},{d},{a b}, {a c},{a d},{b,c}, {b,d},
{c,d}, {a,b,c}, {a,b,d}, {a,c db {bcd) {ab,c d}}.
We note that #(A) = 4 and #(P(A)) = 16 = 2#(A),

Ching-hsiao Cheng A##E MA-1015A



Chapter 2. Sets and Induction
§2.1 Basic Concepts of Set Theory

If A is a set with n elements, then P(A) is a set with 2" elements.

Suppose that A is a set with n elements.
Q If n =0, then A = ; thus P(A) = {&} which shows that
P(A) has 2° = 1 element.
Q If n>1, we write A as {xi,xa, -+ ,Xxp}. To describe a subset

B of A, we need to know for each 1 < i < n whether x; is in B.
For each x;, there are two possibilities (either x; € B or x; ¢ B).
Thus, there are exactly 2" different ways of making a subset of
A. Therefore, P(A) has 2" elements. o
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Chapter 2. Sets and Induction
§2.1 Basic Concepts of Set Theory

Let A, B be sets. Then A < B if and only if P(A) < P(B).

Let A, B be sets.

(=) Suppose that A < B and C € P(A). Then Cis a subset of
A; thus the fact that A € B implies that C € B. Therefore,

Ce P(B).
(«<=) Suppose that A & B. Then there exists x€ A but x¢ B. Then
{x} < A but {x} £ B which shows that P(A) &£ P(B). o)
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Chapter 2. Sets and Induction
§2.2 Set Operations

Let A and B be sets.
© The union of A and B, denoted by A U B, is the set
{x|(xe A) v (xe B)}.
@ The intersection of A and B, denoted by A n B, is the set
{x| (xe A) A (xe B)}.
© The difference of A and B, denoted by A — B, is the set
{x| (xe A) A (x¢ B)}.

Definition

Two sets A and B are said to be disjoint if An B= (.
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Chapter 2. Sets and Induction
§2.2 Set Operations
e Venn diagrams:

AuB ANB
A-B Disjoint sets 4 and B
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Chapter 2. Sets and Induction
§2.2 Set Operations

Let A, B and C be sets. Then

JAS AuB; (b)AnB< A, (c) Ang =¢;, (d) Avg = A;
JANA=A;, (f)AUA=A; (g A=A, (h)\A=;
i) AuB=BUA; .

) AnB= BmA} (commutative laws)
JAuU(Bu(O =(AuB)uC
HAN(BNnCO)=(AnB)nG
m)An(BuC =(AnB)u(An (),
n Au(BnCO)=(AuB)n(Au 0);
JACBeAUB=5; (p) ACBe AnB=A;
JAS B=AuCcBuG(C (r)AcB=AnCc<cBnC

} (associative laws)

} (distributive laws)

O

(a
(e
(
(J
(k
(
(
(
(
(a

Note: (AuB)nC# Au (Bn C) in general!

Ching-hsiao Cheng A##E MA-1015A



Chapter 2. Sets and Induction
§2.2 Set Operations

Proof of (m)

Let x be an element in the universe, and P, Q and R denote the
propositions x € A, x € B and x € C, respectively. Note that from
the truth table, we conclude that

PA(QVR)= [[PAQ) v (PAR),

Q Let xe An(Bu (). Then xe A and x € Bu G thus the
proposition P A (Q v R) is true. Therefore, the proposition
[(P A Q) v (P AR)] is also true which implies that xe An B
or xe An G, thus

An(BuCO < (AnB)u(An ().

@ Working conversely, we find that if xe An Bor xe An C,
then xe An (Bu C). Therefore,

(AnB)U(AnC < An(Bu (). o
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Chapter 2. Sets and Induction
§2.2 Set Operations

Proof of (m)

Let xe An(Bu C). Then xe A and xe Bu C. Thus,

Q if xe B, then xe An B.

Q if xe C, then xe An C.
Therefore, xe An Bor xe An C which shows xe (AnB)u (An C);
thus we establish that

An(BuC c(AnB)u(An ().
On the other hand, suppose that xe (An B) u (An ().
Q@ if xe An B, then x€ A and x€ B.
Q if xe An C, then xe A and xe C.
In either cases, x € A; thus if xe (An B) u (An C), then x€ A but
at the same time xe€ Bor xe C. Thus, xe A and xe B u C which
shows that xe A (B u C). Therefore,

(AnB)U(An (O < An(BuU (). o
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Chapter 2. Sets and Induction
§2.2 Set Operations

Proof of (p) :
(=) Suppose that A < B. Let x be an element in A. Then x€ B
since A € B; thus x € A n B which implies that A € An B.

On the other hand, it is clear that An B < A, so we conclude

that An B= A.
(<) Suppose that An B=A. Let x be an element in A. Then
x € A n B which shows that xe& B. Therefore, A < B. o

V.
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Chapter 2. Sets and Induction
§2.2 Set Operations

Let U be the universe and A < U. The complement (4 £ ) of A,
denoted by A, is the set U — A.

Let U be the universe, and A, B< U. Then
(a) (AYL = A. (b) Au AL = U.

(c) AnA'=g. (A A-B=AnB".
(e) A< B ifand only if B* < A".
(f) An B= & if and only if A< B

(g) (AuB)t =A'n B
(h) (AnB)t =AU B

} (De Morgan’s Law)
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Chapter 2. Sets and Induction
§2.2 Set Operations

Proof of (a) :

By the definition of the complement, x € (A")" if and only if x ¢ AE
if and only if xe A.

By the equwalence of P = Q and ~Q =~P, we conclude that

(Vx)[(xe A) = (xe B)] < (Yx)[(x¢ B)= (x¢ A)]
and the bi-directional statement is identical to that
AC Be B c A",

Alternative proof of (e)

Using (a), it suffices to show that A € B = BC < A" Suppose that
AC B, but B* on AC. Then there exists x€ B and x € A: however,
by the fact that A € B, x has to belong to B, a contradiction. o
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§2.2 Set Operations

Proof of (g) .

By the equivalence of ~(P v Q) and (~P) A (~Q), we find that
(Vx) ~[(xe A) v (xe B)] < (Vx)[(x¢ A) A (x¢ B)]
and the bi-directional statement is identical to that
(AUBf=A"nE. o

Alternative proof of (g)

Let x be an element in the universe.
xe (AuB)tifand only if x¢ AU B
if and only if it is not the case that xe A or xe B
if and only if x¢ A and x¢ B
if and only if xe A® and xe B
if and only if xe A" N B°. o

v
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Chapter 2. Sets and Induction
§2.2 Set Operations

An ordered pair (a, b) is an object formed from two objects a and
b, where a is called the first coordinate and b the second coor-

dinate. Two ordered pairs are equal whenever their corresponding
coordinates are the same.

An ordered n-tuples (aj,as,--- ,ap) is an object formed from n
objects ay, ag, ---, a,, where a; is called the j-th coordinate. Two
n-tuples (a1, a2, - ,an), (c1,¢, - ,cp) are equal if a; = ¢ for
ie{l,2,---,n}.

Let A and B be sets. The product of A and B, denoted by A x B, is
Ax B= {(a,b)|aeA,be B}.

The product of three or more sets are defined similarly.
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Chapter 2. Sets and Induction
§2.2 Set Operations

Let A= {1,3,5} and B= {*, ¢}. Then
Ax B={(1,%),(3,%),(5,%),(1,0),(3,0), (5,0)}

Theorem

| \

If A, B, C and D are sets, then
(a) Ax(BuC)—(AxB)u(AxC).
(Bm C)=(AxB)n(Ax ().

B) (CXD):(AmC)x(BmD).
B) (CxD)c(AuC) x (BuD,).
Byn(BxA) =(AnB)x (An B).
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Chapter 2. Sets and Induction
§2.3 Indexed Family of Sets

Let F be a family of sets.
© The wunion of the family & or the union over &, denoted by

J A, is the set {x‘ x € A for some A € &"}. Therefore,
AeF

xe|JA ifandonlyif (3AeT)(xeA).
AeTF

@ The intersection of the family F or the intersection over JF,

denoted by (1] A, is the set {x|x € Aforall Ae F}. There-
AeF

fore,

xe (A ifandonlyif (YAeT)(xeA).
AeF
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Chapter 2. Sets and Induction
§2.3 Indexed Family of Sets

Let F be the collection of sets given by

= (L2 1 |nen)

Then |J A = (0,2) and () A = {1}. We also write |J A and
Aefrr Ae:T AeF

AD?A as nL_J [ 2— ;} and ﬂ [ D= 7}, respectively.

Let F be the collection of sets given by

r={(L+ ey

Then |J A= (-1,3) and () A=10,2]. We also write | J A and
Aefr” AeF AeF

1 = 1 1 .
AD?A as U ( —,2—1— ;) and nDl (—;,24— E)' respectively.
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Chapter 2. Sets and Induction
§2.3 Indexed Family of Sets

Theorem

Let F be a family of sets.

(a) For every set B in the family &, (| A< B.
AeF

(b) For every set B in the family &, B< | A.
AeT
(c) If the family F is non-empty, then (| A< |J A.
AT AT
C

@) (AﬂgA) - AUSAC.

; c - (De Morgan’s Law)
e) (UA =N A

AeF AeF

Ching-hsiao Cheng A##E MA-1015A
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§2.3 Indexed Family of Sets

Proof of (d)

Let x be an element in the universe. Then

©
xe ( N A) if and only if x¢ (] A
AeF

AeF

if and only if ~(xe N A)

AeT

if and only if ~(VAe JF)(xe A)
if and only if (3A€ F) ~(xe A)
if and only if (3A€ F)(x¢ A)
if and only if (3A e J)(xe AY)

if and only if xe | J A®.
AeF u]
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Chapter 2. Sets and Induction
§2.3 Indexed Family of Sets

Let F be a non-empty family of sets and B a set.
Q@ IfBc Aforall Ae F, then B< () A.
AeF

Q@ IfAc Bforall Ac T, then | J A< B.
AeF

@ Suppose that B Aforall Ae F, and xe B. Then x € A for all

A € F. Therefore, (VA€ F)(xe A) or equivalently, xe [ A.
Aed

@ Suppose that A< Bfor all Ae F, and xe [ J A.Then xe A
AeF

for some A € F. By the fact that A € B, we find that xe B. o
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§2.3 Indexed Family of Sets

Let F = {[-r,r+1)|re Rand r > 0}. Then |J A =R and

AeF
N =10,1). (We also write | J Aand () Aas |J[-r,r?+1) and
AeF AeF AeF r=0
N [=r,r?+1), respectively.)
r=0

O If xe R, then x € [—r,r? + 1) with r = |x] since—|x] < x <
x* + 1. Therefore, R < J A.
AeF
Q If xe [0,1), then xe [—r,r? 4+ 1) for all r > 0; thus [0,1) <
N A If xe (A then xe [—r,r? + 1) for all r > 0; thus

AeF AeF
x> —rand x < r? 4+ 1 for all r > 0. In particular, x > 0 and
x<1. o
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Chapter 2. Sets and Induction
§2.3 Indexed Family of Sets

Definition

Let A be a non-empty set such that for each o € A there is a
corresponding set A,. The family {A,|a € A} is an indexed
family of sets, and A is called the indexing set of this family and

each o € A is called an index.

Remark:

@ The indexing set of an indexed family of sets may be finite or
infinite, the member sets need not have the same number of
elements, and different indices need not correspond to different
sets in the family.

Q If F={A,|a € A} is an indexed family of sets, we also write

U Aas |J As and write () Aas [ A..
AeF aeA AeF aeA
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Chapter 2. Sets and Induction
§2.3 Indexed Family of Sets

© Another way for the union and intersection of indexed family
of sets whose indexing set is N is

UA,,_UA an ﬂAn_ﬂA

neN neN
Also, the union and intersection of sets Ay, A5, As, -, Aloo
can be written as
100 100
An=|JAs and N An_ﬂA
4<n<100 n=4 4<n<100

and etc.

Definition

The indexed family F = {Aa | o€ A} of sets is said to be pairwise
disjoint if for all a, 5 € A, either A, = Ag or A, N Ag = .
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§2.4 Mathematical Induction

e Peano’s Axiom for natural numbers:
© 1 is a natural number.
@ Every natural number has a unique successor which is a natural
number (+1 is defined on natural numbers).
© No two natural numbers have the same successor (n+1 = m+1
implies n = m).
© 1 is not a successor for any natural number (1 is the “smallest”

natural number).

© |If a property is possessed by 1 and is possessed by the successor
of every natural number that possesses it, then the property is
possessed by all natural numbers. (4% % BALp KR#c 1 #79%
FAORE o 2 BB TG EREF P REhT - Bp Rk
T VR B AR § He SR ILT)
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§2.4 Mathematical Induction

e Principle of Mathematical Induction (PMI):
If S< N has the property that

Q@ 1cS, and
@ n+1eSwhenever ne s,
then S=N.

Definition

A set S of natural numbers is called inductive if it has the property
that whenever n€ S, then n+ 1€ S.

PMI can be rephrased as “if S is an inductive set and 1 € S, then
S=N"
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§2.4 Mathematical Induction
e Inductive definition: Inductive definition is a way to define some
“functions” f(n) for all natural numbers n. It is done by describe the
first object f(1), and then the (n+ 1)-th object f(n+ 1) is defined
in terms of the n-th object f(n). We remark that in this way of

defining f, PMI ensures that the collection of all n for which the
corresponding object f(n) is defined is N.

The factorial n! can be defined by

Q1 =1;
Q ForallneN, (n+ 1)l =nlx (n+1).

Note: one can extend the definition of the factorial function by
defining 0! = 1.
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§2.4 Mathematical Induction

n
The notation )] xx can be defined by
k=1
1
Q X xk=xi;
= n+1 n
Q Forall neN, > xx= > Xk + Xnt1 -
k=1 k=1

The notation ] xx can be defined by

L k=1
Q [ xk=xi;
k=1 n+1 n
Q ForallneN, J] xx= ( ka)  Xp41 -
k=1 k=1

<
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§2.4 Mathematical Induction
PMI can provide a powerful method for proving statements that are
true for all natural numbers.

Suppose that P(n) is an open sentence concerning the
natural numbers.

Proof of (V ne N)P(n) by mathematical induction
Proof.

Let S denote the truth of P.

(i) Basis Step. Show that 1 € S.

(i) Inductive Step. Show that S is inductive by showing
thatif ne S, then n+1 € S.

Therefore, PMI ensures that the truth set of P is N. o
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Chapter 2. Sets and Induction
§2.4 Mathematical Induction
PMI can provide a powerful method for proving statements that are
true for all natural numbers.

Suppose that P(n) is an open sentence concerning the
natural numbers.

Proof of (V ne N)P(n) by mathematical induction
Proof.

(i) Basis Step. Show that P(1) is true.
(i) Inductive Step. Suppose that P(n) is true.

Therefore, P(n+ 1) is true.
Therefore, PMI ensures that (V ne N)P(n) is true. o
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§2.4 Mathematical Induction

Prove that for every natural number n,
14+3+5+---+(2n—1)=n?.

Let P(n) be the open sentence 1 +3 +5+ -+ + (2n— 1) = n*.
@ P(1) is true since 1 = 12.
@ Suppose that P(n) is true. Then

14+34+5+--+(2n—1)+(2n+1) = n* + (2n+1) = (n+1)?

which shows that P(n+ 1) is true.

Therefore, PMI ensures that (V n e N)P(n) is true. o
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§2.4 Mathematical Induction
Example (De Moivre's formula)

Let 0 be a real number. Prove that for every ne N,
(cos@ + isinf)" = cos(nf) + isin(nd) .

Let P(n) be the open sentence (cos 0+isin #)" = cos(nf)+isin(nb).

@ Obviously P(1) is true.
@ Suppose that P(n) is true. Then

(cos @ + isin0)™ = [cos(nf) + isin(nd)] - (cos § + isin §)
= [cos(nf) cos 6 — sin(nf) sin 6]
+i[ cos(nf) sin @ + sin(nd) cos 6]
= cos(n+1)0 + isin(n+ 1)6
which shows that P(n+ 1) is true.
Therefore, PMI ensures that (V ne N)P(n) is true. o
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§2.4 Mathematical Induction

Example (Archimedean Principle for N)

For any natural numbers a and b, there exists a natural number s
such that sb > a.

Let b be a fixed natural number, and P(a) be the open sentence
(3seN)(sb> a).
Q If a=1, then 2b > 1; thus P(1) is true.
@ Suppose that P(n) is true. Then there exists t € N such that

tb> n. Then (t+1)b=tb+ b > n+1; thus P(n+1) is true.
Therefore, PMI ensures that (V ne N)P(n) is true. o

V.
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§2.4 Mathematical Induction
e Generalized Principle of Mathematical Induction (GPMI):
If S < Z has the property that
Q@ ke S, and

@ n-+1eSwhenever ne S,

then S contains all integers greater than or equal to k.

Reason: Let T = {n € N| k+n—1¢€ S}. Then T < N. Moreover,
@ 1 Tsince ke Sifandonlyif 1 e T.

Q@ Ifne T, then k+-n—1€S; thus k+ n e S which implies that
n+1eT.

Therefore, PMI ensures that T = N which shows that
Sz{neZ|n>k}.
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§2.4 Mathematical Induction

Prove by induction that n> — n — 20 > 0 for all natural number
n> 5.

Let5:{neN|n2—n—20>O}.
@ 6¢ Ssince 62 —6—20=10 > 0.
@ Suppose that n€ S. Then
(n+1)2—(n+1)—20=n®>+2n+1-n—-1-20
>2n> 0.
Therefore, GPMI ensures that S = {neN|n> 6}. o
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§2.5 Equivalent Forms of Induction

There are two other versions of mathematical induction.
@ Well-Ordering Principle (WOP):

Every nonempty subset of N has a smallest element.

@ Principle of Complete Induction (PCl):

Suppose S is a subset of N with the property:

for all natural number n, if {1,2,--- ,n—1} < S,
then ne S.

Then S=N.

We remark here that in the statement of PCI we treat {1,2,--- 0}
as .
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Remark:
Similar to GPMI, PCI can be extended to a more general case stated

as follows:

Suppose S is a subset of N with the property:

there exists k € Z such that for all natural number n,
if {k,k+1,---,k+n—2}<S, thenk+n—1€S.

Then 5:{neZ|n>k}.

The same as the case of PCI, here we treat {k, k+1,--- k—1} as
the empty set.

In the following, we prove that PMI = WOP = PCI = PMI.
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§2.5 Equivalent Forms of Induction

Proof of

Assume the contrary that there exists a non-empty set S € N such
that S does not have the smallest element. Define T = N\S, and
To = {ne N[{1,2,--- ,n} = T} (T i1 P4l 7B
¥ o fep] et ). Then we have To & T. Also note that 1 ¢ S for
otherwise 1 is the smallest element in S, so 1 € T (thus 1 € Ty).
Assume ke Ty. Since {1,2,--- ,k} = T,1,2,---k¢ S. If k+1€ S,
then k + 1 is the smallest element in S. Since we assume that S
does not have the smallest element, k+ 1 ¢ S; thus k+ 1€ T =

k+1¢€e T().
Therefore, by PMI we conclude that Ty = N; thus T = N which
further implies that S = ¥, a contradiction. a]
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§2.5 Equivalent Forms of Induction

Proof of .
Assume the contrary that for some S # N, S has the property

for all natural number n, if {1,2,--- ;n—1} < S, then ne S. (¥)

Define T=N\S. Then T is a non-empty subset of N; thus WOP

implies that T has a smallest element k. Then 1,2,--- . k—1¢ T
which is the same as saying that {1,2,--- | k—1} < S. By property
(), k€ S which implies that k¢ T, a contradiction. o
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§2.5 Equivalent Forms of Induction

Let S < N has the property

(a) 1€ S, and (b) n+ 1€ S whenever n€ S.
We show that S = N by verifying that
for all natural number n, if {1,2,--- ,n—1} < S, then ne S.
@ (a) implies 1 € S; thus the statement “{1,2,--- [ k—1} = & <
S= 1€ 5" is true.
@ Suppose that {1,2,--- ,k— 1} € S. Then k—1 € S. Using

(b) we find that k € S; thus the statement “{1,2,--- ,k—1} <
S= ke S" is also true.

Therefore, S has property (x) and PCI implies that S = N. o
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§2.5 Equivalent Forms of Induction

Theorem (Fundamental Theorem of Arithmetic)

Every natural number greater than 1 is prime or can be expressed
uniquely as a product of primes.

The meaning of the unique way to express a composite number
as a product of primes:

Let m be a composite number. Then there is a unique way of writing
m in the form

_ 01 02 (e}
m=p; py” - pnn )
where p; < pa < --- < pp are primes and o, ag, - - - , v, are natural

numbers.
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§2.5 Equivalent Forms of Induction

Proof :

We first show that every natural number greater than 1 is either
a prime or a products of primes, then show that the prime factor
decomposition, when it is not prime, is unique.

© Suppose that there is at least one natural number that is greater
than 1, not a prime, and cannot be written as a product of
primes. Then the set S of such numbers is non-empty, so WOP
implies that S has a smallest element m. Since m is not a prime,
m = st for some natural numbers s and t that are greater than
1 and less than m. Both s and t are less than the smallest
element of S, so they are not in S. Therefore, each of sand tis
a prime or is the product of primes, which makes m a product

of primes, a contradiction. o
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§2.5 Equivalent Forms of Induction

Proof (Cont'd).

@ Suppose that there exist natural numbers that can be expressed
in two or more different ways as the product of primes, and let
n be the smallest such number (the existence of such a number

is guaranteed by WOP). Then

nN=pip2---Pk=4qiq2 - qdm
for some k, m € N, where each pj, gj is prime. Then p; divides

g192 - - - gm Which, with the help of Euclid’s Lemma, implies

that py = q; for some j € {1,---,m}. Then pi = qﬂ is a
1 j

natural number smaller than n that has two different prime

factorizations, a contradiction. o
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Alternative Proof of Fundamental Theorem of Arithmetic.

Let m be a natural number greater than 1. We note that 2 is a
prime, so the statement is true when m is 2. Now assume that k is
a prime or is a product of primes for all ksuch that 1 < k< m. If m
has no factors other than 1 and itself, then m is prime. Otherwise,
m = st for some natural numbers s and t that are greater than 1
and less than m. By the complete induction hypothesis, each of s
and t either is prime or is a product of primes. Thus, m = st is a
product of primes, so the statement is true for m. Therefore, we
conclude that every natural number greater than 1 is prime or is a

product of primes by PCI. o
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Let a and b be nonzero integers. Then there is a smallest positive

linear combination of a and b.

Let a and b be nonzero integers, and S be the set of all positive

linear combinations of a and b; that is,
S= {am+bn‘m,neZ,am+bn> 0}.

Then S # Jsincea-1+b-0>0o0ra-(—1)+b-0> 0. By
WOP, S has a smallest element, which is the smallest positive linear

combination of a and b. o

v
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§2.5 Equivalent Forms of Induction

Theorem (Division Algorithm)

For all integers a and b, where a # 0, there exist a unique pair of
integers (q, r) such that b= aq+ r and 0 < r < |a|. In notation,

(V(a,b) € (Z\{0}) x Z)(3q,r) € Z x Z) [(a=bg+ ) A (0 < r<]al)].

W.L.O.G., we assume that a > 0 and a does not divide b. Define
S={b—ak|keZand b— ak > 0}.

Then 0 ¢ S (which implies that b # 0). It is clear that if b > 0,
then S # . If b < 0, then —b > 0; thus the Archimedean property
implies that there exists k € N such that ak > —b. Therefore,
b — a(—k) > 0 which also implies that S # . In either case, S is
a non-empty subset of N; thus WOP implies that S has a smallest
element r. Then b— aq = r for some q € Z; thus b = aqg + r and
r> 0. [m]
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Proof (Cont'd).

Next, we show that r < |a] = a. Assume the contrary that
r=|a|=a Then b—a(q+1)=b—ag—a=r—a=>0. Since we
assume that 0 ¢ S, we must have b — a(qg+ 1) > 0. Therefore,

O<b—alg+l)=r—a<r=b—aq
which shows that ris not the smallest element of S, a contradiction.

To complete the proof, we need to show that the pair (g, r) is
unique. Suppose that there exist (g1, ) and (g2, r2), where 0 <
ri, rp < |al, such that

b=aqi+nrn=ag+r.

W.L.O.G., we can assume that r; > ro; thus a(q2—q1) = rn—re = 0.
Therefore, a divides r — ry which is impossible if 0 < — rn < a.
Therefore, 1 = r» and then g1 = g». o
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§3.1 Relations

Definition
Let A and B be sets. R is a relation from A to B if R is a subset
of A x B. A relation from A to A is called a relation on A. If

(a, b) € R, we say a is R-related (or simply related) to b and write
aRb. If (a,b) ¢ R, we write aRb.

Let R be the relation "is older than” on the set of all people. If ais
32 yrs old, b is 25 yrs old, and cis 45 yrs old, then aRb, cRb, aRc.
Similarly, the "less than" relation on R is the set {(x, y) |x< y}.
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§3.1 Relations

Remark:

Let A and B be sets. Every subset of Ax Biis a relations from A to B;
thus every collection of ordered pairs is a relation. In particular, the
empty set J and the set A x B are relations from Ato B (R=
is the relation that “nothing” is related, while R = A x B is the

relation that “everything” is related).
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§3.1 Relations

For any set A, the identity relation on A is the (diagonal) set
Ia={(a,a)|ac A}.

Let A and B be sets, and R be a relation from A to B. The domain
of R is the set

Dom(R) = {xe A|(3ye B)(xRy)},
and the range of R is the set

Rng(R) = {ye B|(3xe A)(xRy)}.

<

In other words, the domain of a relation R from A to B is the
collection of all first coordinate of ordered pairs in R, and the range
of R is the collection of all second coordinates.
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Let A and B be sets, and R be a relation from A to B. The inverse
of R, denoted by R~ is the relation

R!= {(y,x) € Bx A|(xy) € R (or equivalently, xRy)} .

In other words, xRy if and only if yR~1x or equivalently, (x,y) € R
if and only if (y,x) € R~

Let T = {(x,y) e R x R|y < 4x2 — 7}. To find the inverse of T,
we note that

xeTle(y,xeTex<4dy? —Te x+7<4y?
(:)(x,y)e{(x,y)eRxR‘x+7<0}u
{(x,y)eRxR‘0<X1_7<y2}.
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Let A and B be sets, and R be a relation from A to B.
© Dom(R™ ') = Rng(R).
@ Rng(R!) = Dom(R).

The theorem is concluded by

be Dom(R™ ') < (Jac A)[(b,a) e R & (Jac A)[(a,b) € R]

< be Rng(R),
and
aeRng(R™') < (3be B)[(b,a)e R < (3be B)[(a, b) € R]
< a€ Dom(R). o
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Definition

Let A, B, C be sets, and R be a relation from A to B, S be a relation
from Bto C. The composite of R and S is a relation from A to C,
denoted by So R, given by

SoR= {(a,c) € A x C‘(Hbe B)[(aRb) A (bsc)]}.

4

We note that Dom(S o R) < Dom(R) and it may happen that
Dom(So R) < Dom(R).
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Let A={1,2,3,4,5}, B={p,q,r,s,t} and C= {x,y,z,w}. Let R
be the relation from A to B:
R={(1,p),(1,9),(2,q),(3,1),(4,5)}
and S be the relation from B to C:
S= {(pv X)a (q’ X)? (qa Y)? (57 Z)a (t7 Z)} o
Then So R= {(1,%), (1,), (2,%), (2,), (4,2)}.

Let R={(xy) e RxR|y=x+1} and S={(x,y) e RxR|y=
xz}. Then

RoS={(xy)eRxR|y=x*+1},
SoR={(xy) e RxR|y=(x+1)?}.
Therefore, So R # Ro S.

v
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Suppose that A, B, C, D are sets, R be a relation from A to B, S be
a relation from B to C, and T be a relation from C to D.

(a) (R =R

(b) To(SoR)=(ToS)o R (socomposition is associative).
(C) /BOR RandRolAfR
(d) (SoR)t=R1oS5L

Proof of (a).

(a) holds since
(a,b)e (Rl < (bja)e R"! = (a,b) e R. 0
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Proof of (b)

Since So Ris a relation from A to C, To (So R) is a relation from
A — D. Similarly, (To S) o R is also a relation from A to D. Let
(a,d) € Ax D. Then
(a,d)e To(SoR)
< (Jce Of(a,c)eSoRA(c,d) e T]

< (3ce O)(3be B)[(a,b) e RA (b,c) e SA(c,d)eT]
< (3(b,c)e Bx O)[(a,b) e RA (b,c) €S (c,d) e T]
< (3be B)(3ce Of(a,b) e RA(b,c)eSA(c,d)eT]
< (3be B)[(a,b) e RA (b,d)e To 9
o (a,d)e (ToS)oR.
Therefore, To (SoR) = (ToS)oR. o
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Proof of (c) :

Let (a, b) € A x B be given. Then
(a,b)elgoR< (Ice B)[(a,c) e RA (c,b) € Ig] .
Note that (c, b) € Ig if and only if ¢ = b; thus
(ce B)[(a,c) e RA (c,b) € Ig] < (a,b) € R.
Therefore, (a,b) € Igo R< (a,b) € R. Similarly, (a,b) € Ro Iy <
(a,b) € R.

Let (a, c)eAxC Then
(ca)e(SoR)™

< (a,c)e SoR

< (3be B)[(a,b) e RA (b,c) € S]

< (3be B)[(c,b) e STt A (ba) e R7!]

e (ca)eRlost. o
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Let A be a set and R be a relation on A.

O Riis reflexive on A if (Y x€ A)(xRXx).
Q@ Ris symmetric on A if [V (x,y) € A x A](xRy < yRx).
© R s transitive on A if
[V (x,y,2) € Ax Ax Al [(xRy) A (yRz)] = (xR2)] .
A relation R on A which is reflexive, symmetric and transitive is
called an equivalence relation on A.

v

An equivalence relation is often denoted by ~ (the same symbol as
negation but ~ as negation is always in front of a proposition while

~ as an equivalence relation is always between two elements in a
set).
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§3.2 Equivalence Relations

The relation “divides” on N is reflexive and transitive, but not sym-
metric. The relation “is greater than” on N is only transitive (5.4
=) but not reflexive and transitive.

Let A be a set. The relation “is a subset of” on the power set P(A)
is reflexive, transitive but not symmetric.

The relation S = {(X, y) € R x ]R|x2 = y2} is reflexive, symmetric
and transitive on R.

The relation R on Z defined by R= {(x,y) € Z x Z|x+ y is even}
is reflexive, symmetric and transitive.

N
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§3.2 Equivalence Relations

Let A be a set and R be an equivalence relation on A. For x € A,
the equivalence class of x modulo R (or simply x mod R) is a
subset of A given by

X= {ye A|XRy}.
Each element of x is called a representative of this class. The
collection of all equivalence classes modulo R, called A modulo R,
is denoted by A/R (and is the set A/R= {X|x € A}).

The relation H = {(1,1),(2,2),(3,3),(1,2),(2,1)} is an equiva-
lence relation on the set A = {1,2,3}. Then

1=2={1,2} and 3={3}.
Therefore, A/H = {{1,2},{3}}.
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§3.2 Equivalence Relations

Let A be a non-empty set and R be an equivalence relation on A.
For all x,y € A, we have

(a) xe xand x < A. (b) xRy if and only if x=y.

(c) xRy if and only if xn'y = .

It is clear that (a) holds. To see (b) and (c), it suffices to show that
“XRy=x=Vy" and “xRy = xny= "

Assume that xRy. Then if z € x, we have xRz. The symmetry and
transitivity of R then implies that yRz, thus z € y which implies that
x € y. Similarly, y € x; hence we conclude that “xRy = x=y".
Now assume that x Ny # . Then for for some z € A we have
z € XN Y. Therefore, xRz and yRz. Since R is symmetric and

transitive, then xRy which implies that "xRy = xny = J". o
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§3.2 Equivalence Relations

Let m be a fixed positive integer. For x, y € Z, we say x is congruent
to y modulo m (11 m 5 ‘2 #P¥F x 4 y) and write x = y (mod
m) if m divides (x — y). The number m is called the modulus of
the congruence.

Using 4 as the modulus, we have
3 =3 (mod 4) because 4 divides 3 -3 =0,

9 =5 (mod 4) because 4 divides 9 —5 =4,
—27 =1 (mod 4) because 4 divides —27 — 1 = —28,
20 = 8 (mod 4) because 4 divides 20 — 8 = 12,
100 = 0 (mod 4) because 4 divides 100 — 0 = 100.
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§3.2 Equivalence Relations

For every fixed positive integer m, the relation “congruence modulo
m" is an equivalence relation on 7.

Proof.

O (Reflexivity) It is easy to see that x = x (mod m) for all xe€ Z.
Therefore, congruence modulo m is reflexive on Z.

@ (Symmetry) Assume that x = y (mod m). Then m divides
x — y; that is, x — y = mk for some k € Z. Therefore, y — x =
m(—k) which implies that m divides y — x; thus y = x (mod
m).

© (Transitivity) Assume that x = y (mod m) and y = z (mod
m). Then x—y = mk and y — z = m{ for some k, ¢ € Z.
Therefore, x—z = m(k—+{) which implies that m divides x— z
thus x = z (mod m). o
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§3.2 Equivalence Relations

Definition

The set of equivalence classes for the relation congruence modulo

m is denoted by Z,.

Remark: The elements of Z,, are sometimes called the residue (or
remainder) classes modulo m.

For congruence modulo 4, there are four equivalence classes:
0={-,-16,—-12,—-8,—4,0,4,8,12,16,--- } = {4k| ke Z},
1={-,-15,-11,-7,-3,1,5,9,13,17,--- } = {4k + 1 |ke Z},
2={--,-14,-10,—6,-2,2,6,10,14,18,- - - } = {4k + 2| ke Z},
3={-,-13,-9,-5,-1,3,7,11,15,19, - - } = {4k + 3 |ke Z} .
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§3.2 Equivalence Relations

In general, we will prove that the equivalence relation “congruence
modulo m" produces m equivalence classes

j={mk+j|keZ}, j=0,1,--- ,m—1.

The collection of these equivalence classes, by definition Z/(mod m),
is usually denoted by Z,,.

Theorem
Let m be a fixed positive integer. Then

© Forintegers x and y, x =y (mod m) if and only if the remainder
when x is divided by m equals the remainder when y divided by

m.

@ 7., consists of m distinct equivalence classes:

Zm = {0.1,--+ ,m—1}.

v
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§3.2 Equivalence Relations

O For a given x € Z, let (q(x),r(x)) denote the unique pair in

7 x 7 obtained by the division algorithm satisfying
x=mq(x)+r(x) and 0<r(x)<m.
Then
x =y (mod m) < m divides x— y
< m divides m(q(x) — q(y)) + r(x) — r(y)
< m divides r(x) — r(y)
< r(x)—ry) =0.
where the last equivalence following from the fact that 0 <
r(x), r(y) < m. -
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Proof. (Cont'd).

@ Using D, xand y are in the same equivalence classes (produced
by the equivalence relation “congruence modulo m") if and only
if x and y has the same remainder when they are divided by m.
Therefore, we find that

x={mk+r(x)|keZ} =r(x) VxeZ.

Since r(x) has values from {0, 1,--- , m—1}, we find that Z,, =
{0,1,---,m—1}. The proof is completed if we show that
knj= @ if k+# jand kje {0,1,---,m— 1}. However, if

x € kN J, then
x=mq; + k=mqy +j

which is impossible since k # j and k,j € {0,1,--- ,m — 1}.
Therefore, there are exactly m equivalence classes. E
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§3.3 Partitions

Definition
Let A be a non-empty set. P is a partition of A if P is a collection
of subsets of A such that

Q if Xe P, then X # .
Q if Xe Pand Ye P, then X=Yor Xn Y=.

Q0 U X=A
XeP
In other words, a partition of a set A is a pairwise disjoint collection

of non-empty subsets of A whose union is A.
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§3.3 Partitions

The family G = {[n,n+ 1)| n€ Z} is a partition of R.

Each of the following is a partition of Z:

Q@ P = {E, D}, where E is the collection of even integers and D is
the collection of odd integers.

Q@ X = {N,{0},Z}, where Z~ is the collection of negative inte-
gers.

O = {A| ke Z}, where Ay = {3k, 3k+ 1,3k + 2}.
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§3.3 Partitions

If R is an equivalent relation on a non-empty set A, then A/R is a
partition of A.

First of all, each equivalence class x € A/R must be non-empty

since it contains x. Let x and y be two equivalence classes in A/R.
If XNy # &, then there exists z€ xn y which implies that xRz and
yRz. By the symmetry and the transitivity of R we have xRy which
implies that x =y.

Finally, it is clear that | J X < A since each x £ A. On the other

x€A/R
hand, since each y € A belongs to the equivalence class y, we must
have Ac |J x. Therefore, A= |J x o
x€A/R xeA/R
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Let P be a partition of a non-empty set A. For x,y € A, define xQy
if and only if there exists C € P such that x,y e C. Then

@ Q is an equivalence relation on A.

Q@ A/Q="P.

It is clear that Q is reflexive and symmetric on A, so it suffices to
show the transitivity of @ to complete (D). Suppose that xQy and
yQz. By the definition of the relation Q there exists C; and G, in
P such that x,y € C; and y,z € Cy; hence GG n Gy # . Then
C, = G, by the fact that P is a partition and C;, C € P. Therefore,
x,z€ C; which implies that xQz. =
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Proof. (Cont'd).
Next, we claim that if C € P, then xe Cif and only if x= C. It
suffices to show the direction “=" since x € x.

Suppose that Ce P and xe C.

@ "Cc x": Let ye C be given. By the fact that xe C we must
have y@x. Therefore, y € x which shows C C x.

@ "x< C": Let y € x be given. Then there exists C e P such
that x, y € C. By the fact that x e C, we find that Cn C # .
Since P is a partition of A and C, Ce P, we must have C = NC;
thus y € C. Therefore, x < C. 5

v
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§3.3 Partitions

Proof. (Cont'd).

Now we show that A/Q = P. If C€ P, then C # J; thus there
exists x € C for some x € A. Then the claim above shows that
C=xe A/Q. Therefore, P = A/Q. On the other hand, if xe A/Q,
by the fact that P is a partition of A, there exists C € P such
that x € C. Then the claim above shows that x = C. Therefore,

A/Qc P. o

o

Remark: The relation @ defined in the theorem proved above is
called the equivalence relation associated with the partition P.
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Let A = {1,2,3,4}, and let P = {{1},{2,3},{4}} be a partition
of A with three sets. The equivalence relation @ associated with P

is {(1,1),(2,2), (313), (4,4),(2,3),(3,2)}. The three equivalence

classes for Q are 1 = {1}, 2 = 3 = {2,3} and 4 = {4}. The
collection of all equivalence classes A/Q is precisely P.

The collect P = {Ao, A1, A2, A3}, where
A = {4k + j| ke Z} for j={0,1,2,3},

is a partition of Z because of the division algorithm. The equivalence

relation associated with the partition P is the relation of congruence
modulo 4, and each A; is the residue class of j modulo 4 for j =
0,1,2,3.
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§3.4 Modular Arithmetic

Let m be a positive integer and a, b,c and d be integers. If a = ¢
(mod m) and b = d (mod m), then a+ b = c+ d (mod m) and
a-b=c-d(mod m).

Since a = ¢ (mod m) and b = d (mod m), we have a — ¢ = mk;
and b — d = mky for some kq, ko € Z. Then

a+b=c+ mk +d+ mke = c+d+ m(ks + ko)

and
a-b:(c—i—mkl)-(d—i—mkg):c-d+m(c-k2+d-k1+k1-k2).
Therefore, a+ b= c+ d (mod m) and a- b= c- d (mod m). o
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§3.4 Modular Arithmetic

For each natural number m,

@ the sum of the classes x and y in Z,, denoted by X+ Y, is
defined to be the class containing the integer x + y;

@ the product of the classes x and y in Z,, denoted by X, is
defined to be the class containing the integer x - y.

In symbols, x+y=x+yand x- y=Xy.
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§3.4 Modular Arithmetic

Find 353 in Z7. Since
31=3, 32=2, 33=6, 3*=4, P =5, =1,
we have 363 = 360 .33 = §.

For every integer k, 6 divides k* + 5k. In fact, by the division
algorithm, for each k € Z there exists a unique pair (g, r) such that
k = 6qg -+ r for some 0 < r < 5. Therefore, in Zg we have

k3 +5k=(6g+r3+56q+n=r+5-r
=B+ (-1)-r=8—r.
It is clear that then k3 + 5k = 0 since
B—0=13—1=25—2=33_3=45—4=55—5.
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§3.4 Modular Arithmetic

Let m be a positive composite integer. Then there exists non-zero
equivalence classes x and y in Zp, such that x-y = 0.

Since m is a positive composite integer, m = x- y for some x, y € N,
1 <xy<m Sincel <x,y<m,XYy# 0. Therefore, in Zpn,

0 = m = X -y which concludes the theorem. o

Let p be a prime. If x-y =0 in Zp, then either x=0 ory = 0.

Let X,y € Z, and x-y = 0. Then x-y =0 (mod p). Therefore, p
divides x- y. Since p is prime, p|x or p|y which implies that x = 0 or
y=0, 5
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§3.4 Modular Arithmetic

Let p be a prime. If xy = xz (mod p) and x # 0 (mod p), then
y =z (mod p).

If xy = xz (mod p), then x(y — z) = 0 (mod p). By the previous
theorem X = 0 or y— z= 0. Since x # 0 (mod p), we must have
y = z; thus y = z (mod p). o

Corollary (Cancellation Law for Z

Let p be a prime, andxy,zeZ Ifx-y=x-z thenx # 0 or

y=1z

v
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§4.1 Functions as Relations

Recall the usual definition of functions from A to B:

Definition

Let A and B be sets. A function f: A — B consists of two sets A
and B together with a “rule” that assigns to each x € A a special
element of B denoted by f(x). One writes x — f(x) to denote that
x is mapped to the element f(x). A is called the domain of f, and

B is called the target or co-domain of f. The range of f or the
image of f, is the subset of B defined by f(A) = {f(x) |xe A}.

Each function is associated with a collection of ordered pairs
{(x,f(x))|xe A} = Ax B.

Since a collection of ordered pairs is a relation, we can say that a
function is a relation from one set to another.
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§4.1 Functions as Relations

However, not every relation can serve as a function. A function is a
relation with additional special properties and we have the following

Definition (Alternative Definition of Functions)

A function (or mapping) from A to B is a relation f from A to B
such that
@ the domain of fis A; that is, (Vxe A)(dy € B)((x,y) € f), and
Q if (x,y) e fand (x,2) € f, then y = z
We write f: A — B, and this is read “fis a function from A to B”
or “fmaps A to B". The set B is called the co-domain of f. In the
case where B= A, we say fis a function on A.
When (x,y) € f, we write y = f(x) instead of xfy. We say that y is
the image of f at x (or value of fat x) and that x is a pre-image

of y.

v
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§4.1 Functions as Relations

Remark:

@ A function has only one domain and one range but many pos-
sible co-domains.

@ A function on R is usually called a real-valued function or sim-
ply real function. The domain of a real function is usually
understood to be the largest possible subset of R on which the
function takes values.

Definition

A function x with domain N is called an infinite sequence, or simply
a sequence. The image of the natural number n is usually written
as x, instead of x(n) and is called the n-th term of the sequence.
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§4.1 Functions as Relations

Let A, B be sets, and A < B.
@ The the identity function/map on A is the function [4: A —
A given by [a(x) = x for all xe A.
@ The inclusion function/map from A to B is the function ¢ :
A — B given by ((x) = x for all x€ A.

© The characteristic/indicator function of A (defined on B) is
the map 14 : B — R given by

14(x) = 1 ifxeA,
AT 0 ifxe BA.
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§4.1 Functions as Relations

Definition (Cont'd)
Q The greatest integer function on R is the function [-] : R — Z
given by

[x] = the largest integer which is not greater than x.
The function [-] is also called the floor function or the Gauss
function.
© Let R be an equivalence relation on A. The canonical map
for the equivalence relation R is the map from A to A/R which
maps x € A to X, the equivalence class of x modulo R.
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Two functions f and g are equal if and only if
@ Dom(f) = Dom(g), and
Q for all xe Dom(f), f(x) = g(x).

The identity map of A and the inclusion map from A to B are
identical functions.

f(x) = jf( and g(x) = 1 are different functions since they have
different domains.

v
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Remark:

When a rule of correspondence assigns more than one values to
an object in the domain, we say “the function is not well-defined”,
meaning that it is not really a function. A proof that a function is
well-defined is nothing more than a proof that the relation defined
by a given rule is single valued.

Example

Let x denote the equivalence class of x modulo the congruence re-
lation modulo 4 and y denote the equivalence class of y modulo
the congruence relation modulo 10. Define f(X) = 2- x. Then this
“function” is not really a function since 0 = 4 but 2-0 = 0 while
2-4 =28 # 0. In other words, the way f assigns value to X is not

well-defined.
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§4.1 Functions as Relations

Example

Let x denote the equivalence class of x modulo the congruence re-
lation modulo 8 and y denote the equivalence class of y modulo the
congruence relation modulo 4. The function f: Zg — Z4 given by
f(X) = x+ 2 is well-defined. To see this, suppose that x = z in Zg.
Then 8 divides x— z which implies that 4 divides x— z; thus 4 divides
(x+2) — (z+2). Therefore, x+2 = z+ 2 (mod 4) or equivalently,
x+2=2z+2. So fis well-defined.
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§4.2 Construction of Functions

Let f: A — B. The inverse of fis the relation from B to A:
fFr={(y,x)eBxAly=Ff(x}={(,x) e Bx A|(x,y) € f}.

When f~' describes a function, f~' is called the inverse function/
map of f.

<

Definition

Let f: A— Band g: B — C be functions. The composite of f
and g is the relation from A to C

go f={(x,z) € A x C| there exists (a unique) y € B such that
(x,y) e fand (y,z) € g}.
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§4.2 Construction of Functions

Remark: Using the notation in the definition of functions, if (x, z) €
go f, then z= (go f)(x). On the other hand, if (x,z) € go f, there
exists (a unique) y € B such that (x,y) € fand (y,z) € g Then
y = f(x) and z = g(y). Therefore, we also have z = g(f(x)); thus

(go f)(x) = &(f(x))-

Let A, B and C be sets, and f: A— B and g: B — C be functions.
Then go fis a function from A to C.
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§4.2 Construction of Functions

By the definition of composition of relations, go fis a relation from
Ato C

© First, we show that Dom(go f) = A. Clearly Dom(go f) € A,
so it suffices to show that A < Dom(go f). Let x€ A. Since
f: A — B is a function, there exists y € B such that (x,y) € f.
Since g : B — C is a function, there exists z € C such that
(y,z) € g. This shows that for every x € A, there exists ze C
such that (x,z) € go f; thus Dom(go f) = A.

@ Next, we show that if (x,z;) € go fand (x,2z2) € go f, then
71 = zp. Suppose that (x,z1) € go fand (x,z3) € go f. Then
there exists y1,ys € B such that (x,y1) € fand (y1,21) € g
while (x, y2) € fand (yo2,z2) € g. Since fis a function, y; = y»;
thus that g is a function implies that z; = z. B
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§4.2 Construction of Functions

Recall that if A, B, C, D are sets, R be a relation from A to B, S be
a relation from B to C, and T be a relation from C to D. Then

@ To(SoR)=(ToS)oR.
Q@ IgoR=Rand Roly=R.

Let A,B,C,D be sets, and f: A— B, g: B— C, h: C— D be
functions. Then ho (gof) = (hog)of.

Let f: A— B be a function. Then foly = fand Igof=f.

Let f: A— B be a function, and C = Rng(f). If ' : C— Aisa
function, then f o f=Is and fo f! = I..
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§4.2 Construction of Functions

Let f: A — B be a function, and D < A. The restriction of fto D,
denoted by f|p, is the function

flp = {(x,y) ‘y: f(x) and x€ D}.
If g and h are functions and g is a restriction of h, the h is called an
extension of g.

Example
Let F and G be functions
F={(1,2),(2,6).(3,-9), (5.7},
G= {18,(,)( 8),(5,7),(8,3)} .
Then Fn G = {(2,6),(5,7)} is a function with domain {2, 5} which
is a proper subset of Dom(F) n Dom(G) = {1,2,5}.

On the other hand, {(1,2),(1,8)} < Fu G; thus F U G cannot be
a function.
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§4.2 Construction of Functions

Suppose that f and g are functions. Then fn g is a function with
domain A = {x|f(x) = g(x)}, and fn g = f|a = g|a.

Let (x,y) € fn g Then y = f(x) = g(x); thus
Dom(fn g) = {x| f(x) = g(x)}(z A).
If (x,y1),(x,¥2) € fn g (x,y1),(x y2) € fwhich, by the fact that f

is a function, implies that y; = y». Therefore, fn g is a function.
Moreover,

fng= {(X,y)’ﬂxe Ay= f(x)}
which implies that fn g = f]a. o
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§4.2 Construction of Functions

For fu g being a function, it is (sufficient and) necessary that if
x € Dom(f) n Dom(g), then f(x) = g(x). Moreover, if fu g is
a function, then f = (f U g)|pom(r) and g = (f U &)lpom(g)- In
particular, we have the following

Let f and g be functions with Dom(f) = A and Dom(g) = B. If
An B= , then fu g is a function with domain A u B. Moreover,

f(x) ifxeA,

(Fuglx) = { g(x) ifxeB.
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§4.2 Construction of Functions

Let f and g be functions with Dom(f) = A and Dom(g) = B. If
An B= &, then fug is a function with domain A U B. Moreover,

) ) ifxeA,
(Fug)x) = { g(x) ifxeB. ()

Proof.

Clearly Dom(fu g) = A U B. Suppose that (x,y1),(x,y2) € fug.
If (x,y1) € f, then x € Dom(f); thus by the fact that An B = (,
we must have (x,y2) € f. Since fis a function, y; = f(x) = ya.
Similarly, if (x,y1) € g, then (x,y2) € g which also implies that
y1 = &(x) = y2. Therefore, fu gis a function and (*) is valid. o
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§4.2 Construction of Functions

Let f be a real-valued function defined on an interval / < R.

increasing
decreasing

@ The function fis said to be

f(x) < f(y)
f(x) = f(y)

on [ if x < y implies

that for all x,y e I.

strictly increasing

@ The function fis said to be . .
strictly decreasing

onlifx<y

implies that for all x,y e I.
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§4.3 Functions that are Onto; One-to-One Functions

Let f: A— B be a function.

@ The function fis said to be surjective or onto B if Rng(f) =
B. When fis surjective, fis called a surjection, and we write
f: A8 B

@ The function fis said to be injective or one-to-one if it holds
that “f(x) = f(y) = x=y". When fis injective, fis called a
injection, and we write f: A B

© The function fis called a bijection if it is both injective and

surjective. When fis a bijection, we write f: ALLp
onto
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§4.3 Functions that are Onto; One-to-One Functions

Remark:

© It is always true that Rng(f) < B; thus f: A — B is onto if
and only if B < Rng(f). In other words, f: A — B is onto if
and only if every b € B has a pre-image. Therefore, to prove
that f: A — B is onto B, it is sufficient to show that for every
b € B there exists a € A such that f(a) = b.

@ The direct proof of that f: A — B is injective is to verify the
property that “f(x) = f(y) = x= y". A proof of the injectivity
of f by contraposition assumes that x # y and one needs to
show that f(x) # f(y).
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§4.3 Functions that are Onto; One-to-One Functions

Q@ Iff: A— Bisonto Bandg: B— Cisonto C, then gofis
onto C.

Q Iff: A— B is one-to-one and g : B — C is one-to-one, then
go fis one-to-one.

O Let ce C. By the surjectivity of g, there exists b € B such that
g(b) = c¢. The surjectivity of f then implies the existence of
a € A such that f(a) = b. Therefore, (go f)(a) = g(f(a)) =
g(b) = c which concludes (D.

@ Assume that (go f)(x) = (g )(y). Then g(f(x)) = g(F(y))
thus by the injectivity of g, f(x) = f(y). Therefore, the injec-
tivity of fimplies that x = y which concludes (2). g
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§4.3 Functions that are Onto; One-to-One Functions

Iff: A— B, g: B— C are bijections, then gof: A — Cis a
bijection.

Let f: A— B and g: B— C be functions.
Q@ Ifgofisonto C, then g is onto C.

@ If go fis one-to-one, then f is one-to-one.

@ Let c € C. Since go fis onto C, there exists a € A such
that (gof)(a) = c¢. Let b = f(a). Then g(b) = g(f(a)) =
(gof)(a) =c

@ Suppose that f(x) = f(y). Then (go f)(x) = g(f(x)) =
g(f(y)) = (go f)(y), and the injectivity of go f implies that
X=y. 5
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§4.3 Functions that are Onto; One-to-One Functions

Remark:

© In part @ of the theorem above, we cannot conclude that fis
also onto B since there might be a proper subset B < B such
that f: A — B, g: B — Cand go fis onto C. For example,
Let A=B=R, C=R" U {0}, and f(x) = g(x) = x2. Then
clearly fis not onto B but go fis onto C.

@ In part (@ of the theorem above, we cannot conclue that g
is one-to-one since it might happen that g is one-to-one on
Rng(f) < B but g is not one-to-one on B. For example, let
A= C=R"TuU{0}, B=R, and f(x) = x2, g(x) = log(1+ |x]).
Then clearly g is not one-to-one, but go fis one-to-one.
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Chapter 4. Functions

§4.3 Functions that are Onto; One-to-One Functions

If f: A — B is one-to-one, then every restriction of f is one-to-one.

In the following we consider the function fuU g Recall that if

* f(x) if xe Dom(f),
Demiirben(s) = 2, tem (Fugieg = { gixi if xi Bomgg;.

Theorem
Let f: A— C and g: B — D be functions. Suppose that A and B
are disjoint sets.
©Q /ffisonto C and g is onto D, thenfug: AuB— CuD s
onto Cu D.

@ If f is one-to-one, g is one-to-one, and C and D are disjoint,
then fug: Au B— Cu D is one-to-one.

Ching-hsiao Cheng A##E MA-1015A



Chapter 4. Functions

§4.3 Functions that are Onto; One-to-One Functions

We note that fu g: Au B— Cu D is a function.

Q Letye CuD. Thenye Cor ye D. W.L.O.G., we can assume
that ye C. Since f: A — Cis onto C, there exists x € A such
that (x,y) € f. Using (%), (fug)(x) = f(x) = y. Therefore,
fugisonto Cu D.

@ Suppose that (x1,y),(x2,y) € fug € (Ax C) u (B x D).
Then (x1,y) € for (xi,y) € g W.L.O.G., we can assume that
(x1,y) € f. Since f€ A x Cand g < B x D, by the fact that
Cn D= & we must have (xa,y) € f for otherwise ye Cn D,

a contradiction. Now, since (x1,y), (x2, y) € f, the injectivity of

f then implies that x; = xo. E
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Chapter 4. Functions
§4.4 Inverse Functions

Recall that the inverse of a relation f: A — B is the relation !
satisfying

yi'x o xfy < (xy)ef < y=1f(x.

This relation is a function, called the inverse function of f, if the
relation itself is a function with certain domain.

Definition

A function f: A — B is said to be a one-to-one correspondence
if fis a bijection.
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Chapter 4. Functions
§4.4 Inverse Functions

Let f: A— B be a function.
© ' is a function from Rng(f) to A if and only if f is one-to-one.

@ If f~' is a function, then f~' is one-to-one.

Q "="If (x1,y), (x2,y) € f, then (y,x1), (¥, x2) € f~*. Since !
is a function, we must have x; = xo. Therefore, fis one-to-one.
<" If (y,x1),(y,x2) € ', then (x1,y),(x2,y) € f, and the
injectivity of f implies that x; = xy. Therefore, by the fact that
Rng(f) = Dom(f~ "), f~' is a function with domain Rng(f).

@ Suppose that ! is a function, and (y1, x), (y2,x) € f~'. Then
(x, ¥1), (X, y2) € f which, by the fact that f is a function, implies
that y; = y». Therefore, f~! is one-to-one. o
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§4.4 Inverse Functions

Corollary

The inverse of a one-to-one correspondence is a one-to-one corre-
spondence.

Let f: A— B, g: B— A be functions. Then
Q@ g=f"ifand only if gof= Il and fo g = Ig (if and only if
f=g").
@ If fis surjective, and go f= |4, then g= .

© If fis injective, and fo g = Ig, then g = .

Recall that “If C = Rng(f) and f~' : C — A is a function, then
f~*of= 1 and fof~' = Ic". Therefore, the = direction in ) has
already been proved.
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Chapter 4. Functions

§4.4 Inverse Functions

We first prove the following two claims:
(a) If gof= s, thenf ' < g (b)If fog=Ip, then g< .
To see (a), let (y.x) € f' be given. Then (x,y) € for y = f(x).
Since (go f) = Ia, we must have

8y) = g(f(x) = (go f)(x) = la(x) = x
or equivalently, (y, x) € g. Therefore, ! < g.
To see (b), let (y,x) € g be given. Then x = g(y); thus the fact
that (fo g) = Ig implies that

f(x) = f&(y)) = (fog)(y) = Is(y) = y
or equivalently, (x,y) € f. Therefore, (y,x) € f'; thus g< .

@ ‘=" Done.

“<" This direction is a direct consequence of the claims. o
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§4.4 Inverse Functions

Proof. (Cont'd).

@ Suppose that f: A — Biis surjective and gof= I4. Then claim
(a) implies that f~' < g; thus it suffices to show that g < 7 '.
Let (y, x) € g. Then by the surjectivity of f there exists x; € A
such that y = f(x;) or equivalently, (y,x1) € f~'. On the other
hand,

x=g(y) = g(f(x1)) = (go f)(x1) = la(x1) = x1..
Therefore, g < 1.

© Now suppose that f: A — B is injective and fo g = Ig. Then
claim (b) implies that g < f'; thus it suffices to show that
f~' < g Let (y,x) € f' or equivalently, (x,y) € for y = f(x).
By the fact that fo g = Ig, we have f(g(y)) = y; thus the
injectivity of fimplies that g(y) = x or (y,x) € g. Therefore,

f~' € g which completes the proof. B
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§4.4 Inverse Functions

Since we have shown in the previous theorem that for functions
f:A— Band g: B— A,

Q@ g=f"'ifandonly if gof= 14 and fo g= I,

@ If fis surjective, and go f= /4, then g= 1,

@ If fis injective, and fo g = Ig, then g= !,
we can conclude the following

Corollary

If f: A— B is an one-to-one correspondence, and g: B — A be a

function. Then g= ' if and only if gof=I4 or fo g = Ip.

Let A=R and B = {x|x = 0}. Define f: A— Bby f(x) = x>
and g: B— A by g(y) = \/y. Then fo g = Ig but gis not inverse

function of fsince (go f)(x) = |x| for all x€ A.

4
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§4.4 Inverse Functions

Definition

Let A be a non-empty set. A permutation of A is a one-to-one
correspondence from A onto A.

Theorem

Let A be a non-empty set. Then

the identity map | is a permutation of A.

the composite of permutations of A is a permutation of A.
the inverse of a permutation of A is a permutation of A.
if fis a permutation of A, then foly = lpof=Tf.

if fis a permutation of A, then fof~' = ftof=la.

©000O0CO0

if f and g are permutations of A, then (go f)™! =f1tog L
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Chapter 4. Functions

§4.5 Set Images

Let f: A — B be a function, and XS A, Y S B. The image of X
(under f) or image set of X, denoted by f(X), is the set
f(X) = {ye B|y=f(x) for some xe X} = {f(x) | xe X},
and the pre-image of Y (under f) or the inverse image of Y,
denoted by f~*(Y), is the set
FI(Y)={xeAlf(x) e Y}.

v

Remark: Here are some facts about images of sets that follow from
the definitions:

(a) If ae D, then f(a) € f(D).

(b) If ae f~*(E), then f(a) € E.

(c) If f(a) € E, then ae f(E).

(d) If f(a) € f(D) and fis one-to-one, then a€ D.
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§4.5 Set Images

Let f: A — B be a function. Suppose that C, D are subsets of A,
and E, F are subsets of B. Then
Q@ f(Cn D)< f(C)n (D). In particular, if C < D, then f(C) <
f(D).
Q f(CuD)=f(C)uf(D).
Q@ Y (EnF)=f"YE)n f'(F). In particular, if E < F, then
Y (E) < f(F).
Q Y (EUF)=fYE)uf'(F).
Q@ Cc (f(C)).
Q f(f'(E)) cE
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§4.5 Set Images

Proof of .
Let y € f(Cn D). Then there exists x€ Cn D such that y = f(x).
Therefore, y € f(C) and y € f(D); thus y € f(C) n f(D). o

Remark: It is possible that f(Cn D) < f(C) n f(D). For example,
f(x) = x2, C= (—0,0) and D = (0,). Then Cn D = & which
implies that f(Cn D) = J; however, f(C) = f(D) = (0, o).
Proof of
Let y € B be given. Then
yef(Cu D)« (Ixe CuD)(y=f(x)
< (3xe O)(y=f(x) v (@xe D)(y = f(x))
= (ye f(C)) v (ye f(D))
< yef(C)u f(D).

a
4
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§4.5 Set Images

Let x € A be given. Then
xef Y (EnF)<sf(x)e EnF
< (f(x) € E) n (f(x) € F)
< (xe FY(E)) A (xe F1(F))
< xeHE)n f'(F).

Let xe A be given. Then
xef(EUF)< f(x)e EUF
< (f(x) € E) v (f(x) € F)
< (xe fY(E)) v (xe FY(F))
< xef Y(E)uf'(F). -
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§4.5 Set Images

Proof of .
Let x € C. Then f(x) € f(C); thus x € f'(f(C)). Therefore,
Cc 1(f(Q)). o

Remark: It is possible that C < f'(f(C)). For example, if f(x) =
x? and C=[0,1], then f-1(f(C)) = f1([0,1]) = [-1,1] 2 [0, 1].

Proof of

Suppose that y € f(f~(E)). Then there exists x € f~'(E) such that
f(x) = y. Since x € f'(E), there exists z € E such that f(x) = z
Then y = z which implies that y € E. Therefore, f(f~*(E)) € E. o

Remark: It is possible that f(f~'(E)) & E. For example, if f(x) =
x? and E=[-1,1], then f(f"'(E)) = f([0,1]) = [0,1] < [-1,1].
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§5.2 Infinite Sets
§5.3 Countable Sets
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Chapter 5. Cardinality

§5.1 Equivalent Sets; Finite Sets

Two sets A and B are equivalent if there exists a one-to-one func-
tion from A onto B. The sets are also said to be in one-to-one
correspondence, and we write A ~ B. In notation,

A~ B< (3f: A— B)(fis a bijection) .
If A and B are not equivalent, we write A % B.

The set of even integers is equivalent to the set of odd integers: the
function f(x) = x+ 1 does the job.

The set of even numbers is equivalent to the set of integers: the
. X :
function f(x) = > does the job.
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Chapter 5. Cardinality
§5.1 Equivalent Sets; Finite Sets
The set of natural numbers is equivalent to the set of integers.

For a,b,c,d € R, with a < b and ¢ < d, the open intervals (a, b)
and (c, d) are equivalent. Therefore, any two open intervals are

equivalent, even when the intervals have different length.

Let F be the set of all binary sequences; that is, the set of all
functions from N — {0,1}. Then F ~ P(N), the power set of N.
To see this, we define ¢ : F — P(N) by ¢(x) = {ke N|x, = 1} for

all xe F. Then ¢ is well-defined and ¢ : ?L‘ti»?(N).
onto
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Chapter 5. Cardinality
§5.1 Equivalent Sets; Finite Sets
Equivalence of sets is an equivalence relation on the class of all sets.

O Reflexivity: for all sets A, the identity map /4 is an one-to-one

correspondence on A.
© Symmetry: Suppose that A ~ B; that is, there exists a one-to-
one correspondence ¢ from A to B. Then ¢ ! is an one-to-one
correspondence from B to A; thus B ~ A.
© Transitivity: Suppose that A ~ Band B ~ C. Then there exist
one-to-one correspondences ¢ : AL B and (VR B L ¢
onto onto

Then ¢p o ¢ : A — Cis an one-to-one correspondence; thus
A= C o
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§5.1 Equivalent Sets; Finite Sets

Suppose that A, B, C and D are sets with A~ C and B~ D.

@ If A and B are disjoint and C and D are disjoint, then AU B ~
Cu D.

Q@ Ax B~ CxD.

Suppose that ¢ : AL Cand P BLp.
onto

onto

Q@ Thenpu: AuB— Cu Dis an one-to-one correspondence.
@ Let f: Ax B— C x D be given by

f(a, b) = (#(a), (b)) -

Then fis an one-to-one correspondence from A x Bto C x D.

Ching-hsiao Cheng A##E MA-1015A



Chapter 5. Cardinality
§5.1 Equivalent Sets; Finite Sets

Definition
For each natural number k, let Ny = {1,2,--- , k}. A set Siis finite
if S= & or S~ Ny for some ke N. A set Sis infinite if S is not a
finite set.

For k,je N, N; ~ Ny if and only if k = j.

Proof.

It suffices to prove the = direction. Suppose that ¢ : Ny — N; is a
one-to-one correspondence. W.L.O.G. we can assume that k < j. If
k < j, then ¢(Ny) = {¢(1),9(2), -+ ,¢(k)} # N; since the number
of elements in ¢(Ny) and N; are different. In other words, if k < j,
¢ : Ny — Nj cannot be surjective. This implies that Ny ~ N; if and

only if k= o
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§5.1 Equivalent Sets; Finite Sets

Definition

Let S be a finite set. If S= ¢, then S has cardinal number 0 (or
cardinality 0), and we write #S = 0. If S ~ Ny for some natural
number k, then S has cardinal number k (or cardinality k), and
we write #5 = k.

Remark: The cardinality of a set S can also be denoted by n(S), S,

card(S) as well.

If A is finite and B ~ A, then B is finite.

If S is a finite set with cardinality k and x is any object not in S,
then S u {x} is finite and has cardinality k+ 1.
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§5.1 Equivalent Sets; Finite Sets
For every k € N, every subset of Ny is finite.

Let S = {k eN } the statement “every subset of Ny is finite” hoIds}.

@ There are only two subsets of N1, namely ¢ and N;. Since &
and Ny are both finite, we have 1 € S.

@ Suppose that k€ S. Then every subset of Ny is finite. Since
Nyi1 = Np u {k+ 1}, every subset of Ny is either a subset
of Ny, or the union of a subset of Ny and {k+ 1}. By the fact
that k € S, we conclude from the previous lemma that every
subset of Ny is finite.

Therefore, PMI implies that S = N. o
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§5.1 Equivalent Sets; Finite Sets
Every subset of a finite set is finite.

Let A< B and B is a finite set.

O If A=, then Ais a finite set (and #A = 0).

Q If A== &, then B # (. Since Bis finite, there exists k € N such
that B ~ N; thus there exists a one-to-one correspondence
¢ : Ny — B. Therefore, ¢ ~*(A) is a non-empty subset of Ny,
and the previous lemma implies that ¢ ~'(A) is finite. Since
A~ ¢ '(A), we conclude that A is a finite set. o

v
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§5.1 Equivalent Sets; Finite Sets

©Q If A and B are disjoint finite sets, then A u B is finite, and

#(Au B)=#A+ #B.
@ If A and B are finite sets, then A U B is finite, and

#(AUB)=#A+#B—#(An B).
Q If A, As, -+, A, are finite sets, then | J Ay is finite.

k=1

Q@ W.L.O.G., we assume that A ~ N, and B ~ N, for some
k¢ € N. Let H={k+ 1,k+2,--- k+¢}. Then Ny ~ H
since ¢(x) = k+ x is a one-to-one correspondence from N, —
{k+1,k+2,--- , k+ ¢}. Therefore, Au B~ Nyu H= Nyy;
thus #(A U B) = #A + #B. 5
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§5.1 Equivalent Sets; Finite Sets

@ Note that A U B is the disjoint union of A and B — A, where
B — A is a subset of a finite set B which makes B — A a finite
set. Therefore, A U B is finite.

To see #(AU B) = #A+ #B— #(An B), using D it suffices
to show that #(B— A) = #B— #(A n B). Nevertheless, note
that B = (B — A) u (A n B) in which the union is in fact a
disjoint union; thus @ implies that

#B=#(B—A)+ #(An B)
or equivalently,

#(B—A) = #B—#(An B). 5
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§5.1 Equivalent Sets; Finite Sets

© Let A1, Ay, - -- be finite sets, and

S— {neN‘ U Ay is finite}.
k=1

Then 1 € S by assumption. Suppose that n€ S. Then n+1€ S
because of 2. PMI then implies that S = N. g

<
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§5.1 Equivalent Sets; Finite Sets
Let k > 2 be a natural number. For x € Ny, Ny\{x} ~ Ny_1.

Theorem (Pigeonhole Principle - #4 R 12)

Let n,re N and f: N, — N, be a function. If n > r, then f is not
injective.

If #A = n, #B = r and r < n, then there is no one-to-one function
from A to B.

If A is finite, then A is not equivalent to any of its proper subsets.
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§5.2 Infinite Sets

Recall that a set A is infinite if A is not finite. By the last corollary in
the previous section, if a set is equivalent to one of its proper subset,
then that set cannot be finite. Therefore, N is not finite since there
is a one-to-one correspondence from N to the set of even numbers.

The set of natural numbers N is a set with infinite cardinality. The
standard symbol for the cardinality of N is X. There are two kinds
of infinite sets, denumerable ( & £ ¥ #c ) sets and uncountable ( %
¥ #c) sets.

Definition

A set S is said to be denumerable if S ~ N. For a denumerable
set S, we say S has cardinal number X (or cardinality Rg) and write

45 = Ro.
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§5.2 Infinite Sets

The set of even numbers and the set of odd numbers are denumer-
able.

The set {p,q,r} u{ne N|n+# 5} is denumerable.
The set Z is denumerable.

Consider the function f: N — Z given by

X f g
5 ifxiseven,

%X if xis odd .
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§5.2 Infinite Sets

@ The set N x N is denumerable.

@ If A and B are denumerable sets, then A x B is denumerable.

@ Consider the function F : N x N — N defined by F(m,n) =
2m=1(2n —1). Then F: N x N — N is bijective.

@ If A and B are denumerable sets, then A ~ N and B~ N. Then
Ax B~ N x N; thus A x B~ N since ~ is an equivalence

relation. -

A set S is said to be countable if S is finite or denumerable. We
say S is uncountable if S is not countable.
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§5.2 Infinite Sets

The open interval (0,1) is uncountable.

Assume the contrary that there exists a bijection f: N — (0,1).
Write f(k) in decimal expansion (- i& > /&  ); that is,

F(K) = 0.dy doidlsyc - -

Here we note that repeated 9's are chosen by preference over ter-

minating decimals; that is, for example, we write i = 0.249999 - - -

instead of i — 0.250000- - - . 5

V.
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§5.2 Infinite Sets

Proof. (Cont'd).
Let x€ (0,1) be such that x=0.d1ds - - -, where
5 if di#5,
di = .
3 if dkk =5.
(& - B oxit B BT % k@l (k) ov] #BET % k nik

7 48 % ) . Then x # f(k) for all ke N, a contradiction; thus (0,1)
is uncountable.

a

A set S has cardinal number c (or cardinality c) if S is equivalent to
(0,1). We write #S = ¢, which stands for continuum.
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§5.2 Infinite Sets

© Even open interval (a, b) is uncountable and has cardinality c.

@ The set R of all real numbers is uncountable and has cardinality
c

@ The function f(x) = a+ (b— a)x maps from (0, 1) to (a, b) and
is a one-to-one correspondence.

@ Using @D, (0,1) ~ (—g,g) Moreover, the function f(x) =
s
2
) ~ R. Since ~ is an equivalence relation,

tan x maps from (—g, ) to R and is a one-to-one correspon-

T T
272
(0, 1) ~ R. O

dence; thus (—
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§5.2 Infinite Sets
The circle with the north pole removed is equivalent to the real line.

The set A = (0,2) U [5,6) has cardinality ¢ since the function
f:(0,1) — A given by

4x if0<x<%,

f(x) = L1
2x+4 |f§<x<1

is a one-to-one correspondence from (0,1) to A.
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§5.3 Countable Sets

Let S be a non-empty set. The following statements are equivalent:
@ S is countable;
@ there exists a surjection f: N — S;

© there exists an injection f: S — N.

“@=@" First suppose that S = {x1, -+ ,x,} is finite. Define

f:N— S by
Fl k) — Xk ifk<n,
(k) = X, if k=n.

Then f: N — S is a surjection. Now suppose that S is
denumerable. Then by definition of countability, there exists

f: N2=Ls.

onto a

V.
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§5.3 Countable Sets

@ S is countable;
@ there exists a surjection f: N — §;

Proof. (Cont'd).
“O<=@" W.L.O.G. we assume that S is an infinite set. Let k; = 1.
Since #(S) = w0, S1 = S—{f(k1)} # J; thus Ny = f'(51) isa
non-empty subset of N. By the well-ordered principle (WOP) of
N, N; has a smallest element denoted by k2. Since #(S) = o,
So = S—{f(k1), f(ke)} # &; thus No = f~'(Sy) is a non-empty
subset of N and possesses a smallest element denoted by k3.
We continue this process and obtain a set {kj, ks, -} € N,
where ki < kg < ---, and k; is the smallest element of N;_; =
(S = {f(k), f(ka), -, F(ki-1)}) o
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§5.3 Countable Sets

Proof. (Cont'd).

Claim: f: {kj, ko, --} — Sis one-to-one and onto.

Proof of claim: The injectivity of f is easy to see since
f(kj) ¢ {f(ki),f(ke), -, f(ki-1)} for all j > 2. For sur-
jectivity, assume the contrary that there is s € S such that
s¢ f({ki, ko, --}). Since f: N — S is onto, f~'({s}) is a non-
empty subset of N; thus possesses a smallest element k. Since
s¢ f({ki, ko, - }), there exists £ € N such that k; < k < kp41.
Therefore, k € Ny and k < k1 which contradicts to the fact

that kg1 is the smallest element of N,. o
Let g: N — {ki, ko, -} be defined by g(j) = k;. Then g is

1-1
one-to-one and onto; thus h= go f: N—S.
onto o
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§5.3 Countable Sets

@ S is countable;
© there exists an injection f: S — N.

Proof. (Cont'd).

"‘O=0@" If S={x1, -+, xn} is finite, we simply let f: S — N be
f(xn) = n. Then fis clearly an injection. If S is denumerable,
by definition there exists g : N%S which implies that f =
g~ ' :S— Nis an injection. o
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§5.3 Countable Sets

@ S is countable;
© there exists an injection f: S — N.

Proof. (Cont'd).

“<=@" Let f: S— N be an injection. If fis also surjective, then

e 51—_:>N which implies that S is denumerable. Now suppose
onto

that f(S) < N. Since S is non-empty, there exists s € S. Let
g: N — S be defined by

f~t(n) if ne f(S),
gy { ) e A(S)

5 if n¢ f(S).
Then clearly g : N — S is surjective; thus the equivalence
between (D) and (2) implies that S is countable. 5
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Chapter 5. Cardinality

§5.3 Countable Sets

We have seen that the set N x N is countable. Now consider the
map f: N x N — N defined by f(m, n) = 2™3". This map is not a
bijection; however, it is an injection; thus the theorem above implies
that N x N is countable.

The set Q" of positive rational numbers is denumerable. Since Q"
is infinite, it suffice to check the countability of Q. Consider the

map f: N2> — Qt defined by f(m, n) = % Then fis onto QF; thus

the theorem above implies that Q7 is countable.
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Chapter 5. Cardinality
§5.3 Countable Sets
Any non-empty subset of a countable set is countable.

Proof.

Let S be a countable set, and A be a non-empty subset of S. Since
S is countable, by the previous theorem there exists a surjection
f: N — S. On the other hand, since A is a non-empty subset of S,
there exists a € A. Define

(x) = x ifxeA,
EX=Y 5 ifxe¢ A,

Then g: S — A is a surjection; thus h = gof: N — A is also a
surjection. The previous theorem shows that A is countable. o

A set A is countable if and only if A~ S for some S < N.
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Chapter 5. Cardinality

§5.3 Countable Sets

The union of denumerable denumerable sets is denumerable. In
other words, if F is a denumerable collection of denumerable sets,

then J A is denumerable.
AeF

Let F = {A,-|i € N, A; is denumerable} be an indexed family of
o0

denumerable sets, and define A = JA;. Since A; is denumerable,
=1

we write A; = {xj,Xg, X3, --}. Then A = {x,-j|i,j € N}. Let

f: N x N — A be defined by f(i,j) = xjj. Then f: NxN — Ais

a surjection. Moreover, since N x N ~ N, there exists a bijection

g:N > NxN; thus h = fog: N — A is a surjection which

implies that A is countable. Since A; € A, A is infinite; thus A is

denumerable. o
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Chapter 5. Cardinality

§5.3 Countable Sets

Corollary

The union of countable countable sets is countable ( ¥ # ¥ #ic &

hwif f 8 feeh)

By adding empty sets into the family or adding N into a finite set

if necessary, we find that the union of countable countable sets is
a subset of the union of denumerable denumerable sets. Since a
(non-empty) subset of a countable set is countable, we find that the

union of countable countable sets is countable. o

’
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Chapter 5. Cardinality
§5.3 Countable Sets
The set of rational numbers Q is countable.

Proof.

Let QT and Q™ denote the collection of positive and negative ra-
tional numbers, respectively. We have shown that the set QT is
countable. Since QT ~ Q~ (between them there exists a one-to-
one correspondence f(x) = —x), Q™ is also countable. Therefore,
the previous theorem Q = Q" U Q™ U {0} is countable. =

v
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Chapter 5. Cardinality
§5.3 Countable Sets

Corollary

@ IfF is a finite pairwise disjoint family of denumerable sets, then

| A is countable.
AeF

@ I/f A and B are countable sets, then A U B is countable.

© IfF is a finite collection of countable sets, then | ) A is count-
AeTF
able.

Q If F is a denumerable family of countable sets, then | ) A is

AeF
countable.
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