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Chapter 1. Logic and Proofs
§1.1 Propositions and Connectives

Definition
A proposition is a sentence that has exactly one truth value. It is
either true, which we denote by T, or false, which we denote by F.

72 > 60 (F), 7 > 3 (T), Earth is the closest planet to the sun (F).

The statement “the north Pacific right whale ( & % &%) will be ex-
tinct species before the year 2525" has one truth value but it takes
time to determine the truth value.

That “Euclid was left-handed” is a statement that has one truth
value but may never be known.

<
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Chapter 1. Logic and Proofs
§1.1 Propositions and Connectives

Definition

A negation of a proposition P, denoted by ~ P, is the proposition

“not P". The proposition ~P is true exactly when P is false
false true

Definition

) . conjunction
Given propositions P and Q, the ~~ ) of P and Q, denoted
disjunction
PAQ . ..and P AQ |
by , is the proposition “P Q" is true exactly
PvQ or PvQ

both P and Q are true

when i :
at least one of P or Q is true
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Chapter 1. Logic and Proofs
§1.1 Propositions and Connectives

Example

Now we analyze the sentence “either 7 is prime and 9 is even, or else 11 is
not less than 3". Let P denote the sentence “7 is a prime”, Q denote the
sentence “9 is even”, and R denote the sentence “11 is less than 3"”. Then
the original sentence can be symbolized by (P A Q) v (~R), and the table
of truth value for this sentence is

P Q R [PAQ| ~R | (PAQ)v(~R)
T[T |T ] T |F T
T|T|F|] T | T T
T F|T| F F F
Fl T | T| F F F
T|F|F | F | T T
FIT|F| F | T T
FIF|T F F F
F|F|F F | T T

Since P is true and Q, R are false, the sentence (P A Q) v (~R) is true.
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Chapter 1. Logic and Proofs
§1.1 Propositions and Connectives

Definition

tautology - _ true
o is a propositional form that is for every
contradiction false

assignment of truth values to its component.

The logic symbol (P v Q) v (~PA~Q) is a tautology.

The logic symbol ~(Pv ~P) v (QA ~Q) is a contradiction.

Definition

Two propositional forms are said to be equivalent if they have the
same truth value.
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Chapter 1. Logic and Proofs

§1.1 Propositions and Connectives

For propositions P, Q, R, we have the following:
a) P <~ (~P). (Double Negation Law)

} (Commutative Laws)

dPv(QvR)< (PvQ) vR
PA(QAR)« (PAQ) AR

PAQVR)« (PAQ) v (PAR)
Pv(QAR)« (PvQ) A(PVR)
h) ~(PAQ) e (~P)v(~Q)
) ~PvQ e (~P)a(~Q)

} (Associative Laws)
<
<

} (Distributive Laws)

} (De Morgan’s Laws)
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Chapter 1. Logic and Proofs
§1.1 Propositions and Connectives

We prove (g) for example, and the other cases can be shown in a
similar fashion. Using the truth table,

O
v}
s}

MMM — T >

Pv(QAR)

ae)
O
g

PvQ)A(PVR)

i B e B B B B o
e B e B B s B | )
i e e e B B B |
e e e B B B

e B B B B B |
e B e B B B B IS
e R B B B

we find that “P v (Q A R)" is equivalent to “(P v Q) A (P vR)". o

Ching-hsiao Cheng A##E MA-1015A



Chapter 1. Logic and Proofs
§1.1 Propositions and Connectives

Definition

A denial of a proposition is any proposition equivalent to ~P.

e Rules for ~, A and v:
@ ~ is always applied to the smallest proposition following it.
@ A connects the smallest propositions surrounding it.

© Vv connects the smallest propositions surrounding it.

Example

Under the convention above, we have

Q@ ~Pv~Q e (~P) v (~Q).
OQPVQVR<« (PvQ)vVR<PvVv(QVR).
Q@ PA~Qv~R< [PA(~Q)] v (~R).

Q RAPASAQ<e [RAP)AS] AQ.

v
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Chapter 1. Logic and Proofs

§1.2 Conditionals and Biconditionals

Definition

For propositions P and Q, the conditional sentence P = Q is the
proposition “if P, then Q". Proposition P is called the antecedent
and Q is the consequence. The sentence P = Q is true if and only

if P is false or Q is true.

Remark:

In a conditional sentence, P and Q might not have connections. The
truth value of the sentence “P = Q" only depends on the truth value
of P and Q.
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Chapter 1. Logic and Proofs

§1.2 Conditionals and Biconditionals

Example

We would like to determine the truth value of the sentence “if x > §,

then x > 5". Let P denote the sentence “x > 8" and Q the sentence
“x> 5"

Q If P, Q are both true statements, then x > 8 which is (exactly
the same as P thus) true.

Q If P is false while Q is true, then 5 < x < 8 which is (exactly
the same as ~P A Q thus) true.

Q If P, Q are both false statements, then x < 5 which is (exactly
the same as ~Q thus) true.

Q It is not possible to have P true but Q false.
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Chapter 1. Logic and Proofs

§1.2 Conditionals and Biconditionals

e How to read P = Q in English?
1. If P, then Q. 2. P is sufficient for Q. 3. P only if Q.
4. Q whenever P. 5. Q is necessary for P. 6. Q, if/when P.

Definition

Let P and Q be propositions.
© The converse of P = Q is Q = P.

@ The contrapositive of P = Q is ~Q = ~P.
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Chapter 1. Logic and Proofs

§1.2 Conditionals and Biconditionals

Example

We would like to determine the truth value, as well as the converse
and the contrapositive, of the sentence “if 7 is an integer, then 14
is even".

© Since that 7 is an integer is false, the implication “if 7 is an
integer, then 14 is even” is true.

@ The converse of the sentence is “if 14 is even, then 7 is an
integer” which is a false statement.

© The contrapositive of the sentence is “if 14 is not even, then 7 is
not an integer” which is a true statement since the antecedent
“14 is not even” is false.

By this example, we know that a sentence and its converse cannot
be equivalent.
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Chapter 1. Logic and Proofs

§1.2 Conditionals and Biconditionals

For propositions P and Q, the sentence P = Q is equivalent to its
contrapositive ~Q =~ P.

Using the truth table

P Q | P=Q| ~Q ~P | ~Q=~P
T T T F F T
T F F T F F
F T T F T T
F F T T T T

we conclude that the truth value of P = Q and ~Q =~P are the
same; thus they are equivalent sentences. o
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Chapter 1. Logic and Proofs

§1.2 Conditionals and Biconditionals

Definition

For propositions P and Q, the bi-conditional sentence P < Q is
the proposition “P if and only if Q". The sentence P < Q is true
exactly when P and Q have the same truth values. In other words,
P < Q is true if and only if P is equivalent to Q.

Remark: The notation < is a combination of = and its converse
<, so the notation seems to suggest that (P < Q) is equivalent to
(P = Q) A (Q=P). This is in fact true since

P| Q|PeQ|P=Q| Q=P | (P=QAr(P=Q)
T | T T T T T
T | F F F T F
F | T F T F F
F F T T T T
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Chapter 1. Logic and Proofs

§1.2 Conditionals and Biconditionals

@ The proposition “23 = 8 if and only if 49 is a perfect square”
is true because both components are true.

o 22 . . . %
@ The proposition “m = = if and only if v/2 is a rational number
is also true (since both components are false).

© The proposition “6 + 1 = 7 if and only if Argentina is north
of the equator” is false because the truth values of the compo-
nents differ.
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Chapter 1. Logic and Proofs

§1.2 Conditionals and Biconditionals

Remark:

Definitions may be stated with the “if and only if” wording, but it
is also common practice to state a formal definition using the word
“if". For example, we could say that “a function fis continuous at

a number cif ---" leaving the “only if” part understood.

A teacher says “If you score 74% or higher on the next test, you will

pass the exam". Even though this is a conditional sentence, everyone
will interpret the meaning as a biconditional (since the teacher tries

to “define” how you can pass the exam).
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Chapter 1. Logic and Proofs

§1.2 Conditionals and Biconditionals

For propositions P, Q and R, we have the following:

(a) (P=Q) < (~PvQ).
(b) P=Q) < (P=Q) A (Q=P).

)

() ~P=Q) < (Pr~Q).
(d) ~PArQ) < (P=~Q)
() ~PArQ) < (Q=~P).
() P=(Q=R) « (PArQ)=R.
() P=(QAR) & (P=Q) A (P =R)
(h)

h) (PvQ)=R < (P=R)A (Q=R).
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Chapter 1. Logic and Proofs

§1.2 Conditionals and Biconditionals

e How to read P < Q) in English?
1. P if and only if Q. 2. P if, but only if, Q.
3. P implies Q, and conversely. 4. P is equivalent to Q.
5. P is necessary and sufficient for Q.

e Rules for ~, A, v, = and <: These connectives are always

applied in the order listed.

QO P=~QvR<Sisanabbr. for (P = [(~Q) vR]) «S.
Q@ Pv~Q<R=Sisanabbr. for [Pv (~Q)] & (R=9).
Q@ P= Q= Risan abbr. for (P = Q) = R.
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Chapter 1. Logic and Proofs

§1.3 Quantified Statements

Definition

An open sentence is a sentence that contains variables. When P
is an open sentence with a variable x (or variables xi, -, x,), the
sentence is symbolized by P(x) (or P(x1,- -, xn))-

The truth set of an open sentence is the collection of variables
(from a certain universe) that may be substituted to make the open
sentence a true proposition. (i # P(x) % B e7#73 x 3% the
truth set of P(x))

Remark:
In general, an open sentence is not a proposition. It can be true

or false depending on the value of variables.
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Chapter 1. Logic and Proofs

§1.3 Quantified Statements

Let P(x) be the open sentence “x is a prime number between 5060
and 5090". In this open sentence, the universe is usually chosen
to be N, the natural number system, and the truth set of P(x) is
{5077,5081, 5087}.

Remark:

The truth set of an open sentence P(x) depends on the universe
where x belongs to. For example, suppose that P(x) is the open
sentence “x2 + 1 = 0" If the universe is R, then P(x) is false for
all x (in the universe). On the other hand, if the universe is C, the
complex plane, then P(x) is true when x = +i (which also implies
that the truth set of P(x) is {i, —i}).
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Chapter 1. Logic and Proofs

§1.3 Quantified Statements

With a universe X specified, two open sentences P(x) and Q(x) are

equivalent if they have the same truth set of all xe X.

The two sentences “3x+ 2 = 20" and “2x — 7 = 5" are equivalent

open sentences in any of the number system, such as N, Z, Q, R
and C.

The two sentences “x*> —1 > 0" and “(x < —1) v (x > 1)" are

equivalent open sentences in R.
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Chapter 1. Logic and Proofs

§1.3 Quantified Statements

Given an open sentence P(x), the first question that we should ask

ourself is “whether the truth set of P(x) is empty or not”.

Definition

The symbol 3 is called the existential quantifier. For an open

sentence P(x), the sentence (Ix)P(x) is read “there exists x such
that P(x)" or “for some x, P(x)". The sentence (Ix)P(x) is true if
the truth set of P(x) is non-empty.

Remark:
An open sentence P(x) does not have a truth value, but the quan-

tified sentence (Ix)P(x) does.
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Chapter 1. Logic and Proofs

§1.3 Quantified Statements

The quantified sentence (3 x)(x” — 12x* + 16x — 3 = 0) is true in

the universe of real numbers.

Example (Fermat number)

The quantified sentence (3 n)(2%" + 1 is a prime number) is true in

the universe of natural numbers.

v

Example (Fermat's last theorem)

The quantified sentence
@xpz )+ =2 An>3)
is true in the universe of integers, but is false in the universe of

natural numbers.

v
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Chapter 1. Logic and Proofs

§1.3 Quantified Statements

Definition
The symbol V is called the universal quantifier. For an open sen-

tence P(x), the sentence (V x)P(x) is read “for all x, P(x)", "for
every x, P(x)" or “for every given x (in the universe), P(x)". The
sentence (V x)P(x) is true if the truth set of P(x) is the entire uni-

VErse.

| A\

Example
The quantified sentence (V n)(2%" + 1 is a prime number) is false in

the universe of natural numbers since

22° 11 = 641 x 6700417 .
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Chapter 1. Logic and Proofs
§1.3 Quantified Statements

In general, statements of the form “every element of the set A has
the property P” and “some element of the set A has property P"
may be symbolized as (V x € A)P(x) and (3 x € A)P(x), respective.
Moreover,
Q@ "All P(x) are Q(x)" (*73 % L P e x 3B L Q or X & /%
P ¢ x 3% & Q) should be symbolized as
“(¥3)(P(x) = Q(x))"-
(See the next slide for the explanation!)
@ "“Some P(x) are Q(x)" (7 £ & P hx+ B E Qor 3 &
x F pEi%s &_P 4r Q) should be symbolized as

“3%)(P(9) A Q)"




Chapter 1. Logic and Proofs

§1.3 Quantified Statements

e Explanation of 1: Suppose that the truth set of P(x) is A and
the truth set of Q(x) is B. Then “All P(x) are Q(x)" implies that
A € B; that is, if xin A, then x in B. Therefore, by reading the

truth table
xeA | xeB| P(x) | Q(x) | P(x)=Q(x)
T T T T T
T | F T F F
F T F T T
F F F F T

we find that the truth set of the open sentence P(x) = Q(x) is the
whole universe since the second case (x € A)A ~ (x € B) cannot

happen.
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Chapter 1. Logic and Proofs

§1.3 Quantified Statements

@ The sentence “for every odd prime x less than 10, x* 4 4 is
prime” can be symbolized as

(Vx)[(x is odd) A (x is prime) A (x < 10) = (x*+4 is prime)].

@ The sentence “for every rational number there is a larger inte-
ger” can be symbolized as

(VxeQ)[(3zeZ)(z> x)] .
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Chapter 1. Logic and Proofs

§1.3 Quantified Statements

@ The sentence “some functions defined at 0 are not continuous

at 0" can be symbolized as
(31)[(fis defined at 0) A (fis not continuous at 0)].

@ The sentence “some integers are even and some integers are

odd” can be symbolized as
(Ix)(x is even) A (Fy)(y is odd).

© The sentence “some real numbers have a multiplicative inverse”
(7 &9 43 32 5 ~ %) can be symbolized as

@xeR)[@yeR)(xy=1)].
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Chapter 1. Logic and Proofs

§1.3 Quantified Statements

To symbolized the sentence “any real numbers have an additive
inverse” (ix @ ﬁxfa’ﬂ’ﬁ 4v;2 F =), itis required that we combine
the use of the universal quantifier and the existential quantifier:

(VxeR)[AyeR)(x+y=0)].

This is in fact quite common in mathematical statement. Another
example is the sentence “some real number does not have a multi-
plicative inverse” (7 & F #iZ F 3z ¥ ~ %) which can be sym-
bolized by

(IxeR) ~ [(Elye R)(xy = 1)]
or simply

(AxeR)[(Vye R)(xy # 1)].
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Chapter 1. Logic and Proofs
§1.3 Quantified Statements

¢ Continuity of functions: By the definition of continuity and using

the logic symbol, fis continuous at a number c if

(Ve) (38) (Vx) [(|x— ] < 8) = (|f(x) — f()] < 5)1 .

-

Q(e.d)
P(e)=(36)Q(e.0)

@ The universe for the variables € and ¢ is the collection of positive

real numbers. Therefore, sometimes we write
(Ve>0)(3d> O)(Vx)[(|x— d <d)= (|f(x) — f(o)| < E)] .

@ The sentence  P(e)  is always true for any € > 0.
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Chapter 1. Logic and Proofs
§1.3 Quantified Statements

¢ Continuity of functions: By the definition of continuity and using

the logic symbol, fis continuous at a number c if

(Ve) (38) (Vx) [(|x— ] < 8) = (|f(x) — f()] < 5)1 .

-

Q(e,9)

S J

P(e)=(36)Q(e.0)

@ The universe for the variables € and ¢ is the collection of positive

real numbers. Therefore, sometimes we write
(Ve>0)(3d> O)(Vx)[(|x— d <d)= (|f(x) — f(o)| < E)] .

@ The sentence (30)Q(g,d) is always true for any € > 0.
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Chapter 1. Logic and Proofs

§1.3 Quantified Statements

o Continuity of functions: By the definition of continuity and using

the logic symbol, fis continuous at a number c if

(Ve) (38) (Vx) [(|x— | < 8) = (|f(x) — f(d)] < 5)1 .

.

Q(e.0)
P(e)=(36)Q(e.0)

@ The sentence (36)Q(e,d) is always true for any € > 0.

© Suppose ¢ is a given positive number. Then the truth set of
Q(e, d) is non-empty which implies that “there is at least one

positive number ¢ making the sentence Q(e, d) true”.
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Chapter 1. Logic and Proofs

§1.3 Quantified Statements

Definition

Two quantified statement are equivalent in a given universe if they
have the same truth value in that universe. Two quantified sentences
are equivalent if they are equivalent in every universe.

Example
Consider quantified sentences “(V x)(x > 3)" and “(V x)(x > 4)".

© They are equivalent in the universe of integers because both
are false.

@ They are equivalent in the universe of natural numbers greater
than 10 because both are true.

© They are not equivalent in the universe X = [3.7, 00) of the real
line.
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Chapter 1. Logic and Proofs

§1.3 Quantified Statements

Theorem

If P(x) is an open sentence with variable x, then
QO ~ (Yx)P(x) is equivalent to (3 x) ~P(x).
Q@ ~(Ix)P(x) is equivalent to (¥ x) ~P(x).

Let X be the universe, and A be the truth set of P(x).
© The sentence (V x)P(x) is true if and only if A = X; hence
~ (Vx)P(x) is true if and only if A # X. The sentence (I x) ~
P(x) is true if and only if the truth set of ~P(x) is non-empty;
thus (3 x) ~P(x) is true if and only if A # X.
@ Using (a) and the double negation law,
~(3X)P(x) < ~ [~ ((V X) ~P(X))] < (Vx) ~P(x).
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Chapter 1. Logic and Proofs
§1.3 Quantified Statements

Q IfP(x,y,z) and Q(x,y,z) are open sentences with variables x,
Y, z, then ~ [(Vx)(3y)(V 2)(P(x, y,2) = Q(x, . 2))] is equi-
valent to (3x)(Vy)(32)(P(x,y,2)A ~Q(x,,2)).

Q IfP(xy,-- ,xq4) and Q(xy, -+ ,x4) are open sentences with vari-
ables xq, xa, x3, X4, then

~ [(3 x1)(V x2)(3 x3)(V X4)(P(X1./ sy x) = Qxy, - ,X4))]
is equivalent to
(Vx1)3x2) (¥ x3) 3 xa) (P(x1, -+, xa) A ~Q(x1, -+, xa)).

The corollary can be proved using the theorem in the previous page
and the fact that ~ (P = Q) < (PA~Q). o
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Chapter 1. Logic and Proofs
§1.3 Quantified Statements

e Discontinuity of functions:

A function fis continuous at c if and only if
(Ve>0)36>0)(Vx)[(|x— ¢ <8) = (|f(x) — f(c)| < )]
Therefore, fis not continuous at c if and only if
(Ae>0)(Vé>0)3x)[(]x—c <) » (|f(x) — f(0)| = ¢)] .
fEd i fhcr Y PG h- Bildke EFERE
X

I
FRHE (c—8,c+8) ¢ F x §i8 LX)~ F(O)
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Chapter 1. Logic and Proofs
§1.3 Quantified Statements

¢ Non-existence of limits:
A function f defined on an interval containing c, except possibly at
¢, is said to have a limit at ¢ (or lim f(x) exists) if and only if
FALeR)(Ve>0)36>0)(VX)((0< |x—d < &)= (|f(x) — L| <g)).
Therefore, f does not have a limit at c if

(VLeR)(Fe > 0)(Vd>0)3X)((0< |x—¢ <) A (|f(x) — L| = ¢)).
fadh c o Fecte2 F A B2 FHTE (P de) 7k
LEw oy dl- Bodee REELLEO IR R H
(c=dulcetd) ® 3 x §_RE|f(x)—L|>¢
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Chapter 1. Logic and Proofs

§1.3 Quantified Statements

Let P(x,y) be an open sentence with two variables x and y. Then
(Vx y)P(x,y) = (VX)[(Vy)P(x,y)] .

Suppose that the universe of x and y are X and Y, respectively. We
note that

(V x,y)P(x,y) is true < the truth set of P(x,y) is X x Y

<> For every given x € X, the truth set of
P(x,y)is Y

< (VX)[(V9)P(xy)] o
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Chapter 1. Logic and Proofs

§1.3 Quantified Statements

Definition

The symbol 3! is called the unique existential quantifier. For
an open sentence P(x), then sentence (3!x)P(x) is read “there is a
unique x such that P(x)". The sentence (3!x)P(x) is true if the truth
set of P(x) has exactly one element.

If P(x) is an open sentence with variable x, then
Q@ (3XP() = FP(x).
@ (AP(x) = [(@P()A((YY)(YI)(P(y)AP(2) = y = 2))].
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Chapter 1. Logic and Proofs

§1.4 Basic Proof Methods | (Direct Proof)

Mathematical Theorem: A statement that describes a pattern
or relationship among quantities or structures, usually of the form
P=qQ.

Proofs of a Theorem: Justifications of the truth of the theorem
that follows the principle of logic.

Lemma: A result that serves as a preliminary step to prove the main
theorem.

Axiom (= 3k): Some facts that are used to develop certain theory
and cannot be proved.

Undefined terms: Not everything can/have to be defined, and we
have to treat them as known.
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Chapter 1. Logic and Proofs

§1.4 Basic Proof Methods | (Direct Proof)

Remark:

@ To validate a conditional sentence P = Q, by definition you
only need to show that there is no chance that P is true but at
the same time Q is false. Therefore, you often show that if P
is true then Q is true, if Q is false then P is false or that P is
true and Q is false leads to a contradiction (always false).

@ Sometimes it is difficult to identify the antecedent of a math-
ematical theorem. Usually it is because the antecedent is too
trivial to be stated. For example, “\/2 is an irrational number”
is a mathematical theorem and it can be understood as “if you
know what an irrational number is, then 4/2 is an irrational
number”.
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Chapter 1. Logic and Proofs

§1.4 Basic Proof Methods | (Direct Proof)

¢ General format of proving P = Q) directly:

Direct proof of P = Q
Proof.

Assume P. (¥ # %3 3 ;\Boik > 4 & 5 P p %)

Therefore, Q.
Thus, P = Q. o
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Chapter 1. Logic and Proofs

§1.4 Basic Proof Methods | (Direct Proof)

Basic Rules: In any proof at any time you may

@ state an axiom (by the axiom of ------ ), an assumption (as-
sume that ------ ), or a previously proved result (by the fact
that -+ --- )

@ state a sentence whose symbolic translation is a tautology (such
as classification 4" #f).

© state a sentence (or use a definition) equivalent to any state-
ment earlier in the proof.

@ use the modus ponens rule: after statements P and P = Q
appear in a proof, state Q.
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Chapter 1. Logic and Proofs

§1.4 Basic Proof Methods | (Direct Proof)

Prove that if x is odd, then x4 1 is even.

Proof.
Assume that x is an odd number.

Then x = 2k + 1 for some integer k;
thus x+1 = 2k+ 1+ 1 = 2(k+ 1) which shows that x+ 1 is a
multiple of 2.

Therefore, x+ 1 is even. o
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§1.4 Basic Proof Methods | (Direct Proof)

Let a, b, c be integers. If a divides b and b divides ¢, then a divides
C.

Let a, b, c be integers.

Assume that a divides b and b divides c.
Then b= am for some integer m, and ¢ = bn for some integer n;

thus ¢ = (am)n = a(mn) which shows that c is an multiple of a.

Therefore, a divides c. o
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§1.4 Basic Proof Methods | (Direct Proof)

Let a, b, c be integers. If a divides b and b divides ¢, then a divides
C.

Let a, b, c be integers.

Assume that a divides b. Then b = am for some integer m.
Assume that b divides c. Then ¢ = bn for some integer n.

Thus, ¢ = (am)n = a(mn) which shows that c is an multiple of a.

Therefore, a divides c. o

v
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Chapter 1. Logic and Proofs

§1.4 Basic Proof Methods | (Direct Proof)

Show that (Vxe R)(x2 +1 > 0).

332 P = Q -+ 4| : Show that if xe R, then x> +1 > 0.
Proof

Assume that x is a real number.

Then either x> 0, x=0 or x < 0.
Q If x>0, then X2 = x- x> 0.
Q If x=0, then X2 = 0.
Q If x< 0, then (—x) > 0; thus x* = (—x) - (—x) > 0.
In either cases, x2 = 0; thus x> + 1 > 0.
Therefore, X2 + 1 > 0. o
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Chapter 1. Logic and Proofs

§1.4 Basic Proof Methods | (Direct Proof)

Show that (Vz—:>0)(#{neNH >5} <oo).

#w:¥= P= Q ¢ 3] : Show that if ¢ > 0, then the collection

{n € N‘ = > 5} has only finitely many elements.

Proof

]
—_

Assume that € > 0. Then - < 0.

Note that {n € N‘ % >£} = {n e N ’ n< é} which is the collection

1
of natural numbers less than =. Therefore,
€

1
#{neNH>e}<—<oo. O
(3

4
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Chapter 1. Logic and Proofs

§1.4 Basic Proof Methods | (Direct Proof)

Show that (Vxe R)(Iye R)(x+ y=0).

#WwF= P = Q ¢ 3| : Show that “if xe R, then the truth set
of the open sentence P(y) = (x+ y = 0) is non-empty” or “if
x € R, then there exists y € R such that x+ y=0".

Proof.
Assume that x is a real number.

Then y = —x is a real number and x+ y = 0.

Thus, there exists y € R such that x+ y = 0.

Therefore, for each x € R, there exists y € R such that x+ y= 0. o

V.
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Chapter 1. Logic and Proofs

§1.4 Basic Proof Methods | (Direct Proof)

Show that (Vxe R)(Iye R)(x+ y=0).

#WwF= P = Q ¢ 3| : Show that “if xe R, then the truth set
of the open sentence P(y) = (x+ y = 0) is non-empty” or “if
x € R, then there exists y € R such that x+ y = 0"

Proof.
Let x be a real number.

Then y = —x is a real number and x+ y = 0.

Thus, there exists y € R such that x+ y = 0.

Therefore, for each x € R, there exists y € R such that x+ y= 0. o

V.
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Chapter 1. Logic and Proofs

§1.4 Basic Proof Methods | (Direct Proof)

Show that (Vxe R)(Iye R)(x+ y=0).

#WwF= P = Q ¢ 3| : Show that “if xe R, then the truth set
of the open sentence P(y) = (x+ y = 0) is non-empty” or “if
x € R, then there exists y € R such that x+ y = 0"

Proof.
Let x€ R be given.

Then y = —x is a real number and x+ y = 0.

Thus, there exists y € R such that x+ y = 0.

Therefore, for each x € R, there exists y € R such that x+ y= 0. o

V.
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Chapter 1. Logic and Proofs

§1.5 Basic Proof Methods Il (Indirect Proof)

Recall that a conditional sentence is equivalent to its contrapositive;
thatis, (P = Q) < (~Q=~P).

¢ General format of proving P = () by contraposition:

Proof of P = Q by Contraposition
Proof.

Assume ~Q. (F * X33 {2 & E 5 ~Q p 3)

Therefore, ~P.
Thus, ~Q =~P.
Therefore, P = Q. o
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Chapter 1. Logic and Proofs

§1.5 Basic Proof Methods Il (Indirect Proof)

Let m be an integer. Show that if m? is even, then m is even.

Proof.
Assume (the contrary) that m is odd.

Then m = 2k + 1 for some integer k.
Therefore, m* = (2k+1)? = 4k> + 4k+ 1 = 2(2k*> + 2k) + 1 which
is an odd number.

Thus, if mis odd, then m? is odd.

Therefore, if m? is even, then m is even. o
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Chapter 1. Logic and Proofs

§1.5 Basic Proof Methods Il (Indirect Proof)

Let x and y be real numbers such that x < 2y. Show that if 7xy <
3x% + 2y2, then 3x < y.

Let x and y be real numbers such that x < 2y.

Assume the contrary that 3x > y.

Then 2y — x> 0 and 3x— y > 0.

Therefore, (2y — x)(3x — y) > 0.

Expanding the expression, we find that 7xy — 3x*> — 2)? > 0.
Therefore, Txy > 3x* + 2y°.

Thus, if 3x > y, then Txy > 3x% + 2y

Therefore, if 7xy < 3x%> + 2)?, then 3x < y. o

Ching-hsiao Cheng A##E MA-1015A



Chapter 1. Logic and Proofs

§1.5 Basic Proof Methods Il (Indirect Proof)

e General format of proving P = () by contradiction:

Proof of P = QQ by Contradiction

Proof.

Assume P and ~Q. (F * (x5 3 4B > A £ &5 P& ~Q
S f)

Therefore, ~P.
Thus, PA ~P, a contradiction.
Therefore, P = Q. o
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Chapter 1. Logic and Proofs

§1.5 Basic Proof Methods Il (Indirect Proof)

e General format of proving P = () by contradiction:

Proof of P = QQ by Contradiction

Proof.

Assume P and ~Q. (F * (x5 3 4B > A £ &5 P& ~Q
S f)

Therefore, ~P, a contradition.
Therefore, P = Q. o
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Chapter 1. Logic and Proofs

§1.5 Basic Proof Methods Il (Indirect Proof)

As mentioned before, there are cases that the antecedent of a the-
orem is unclear. This kind of theorems are of the form Q.

e General format of proving Q by contradiction:

Proof of ) by Contradiction

Proof.

Asume ~Q. (7 5 SR LE LG ~Q 1 )
m

: i A%)
Therefore, P.

(4 PA~Q & {78484 7)
Therefore, ~P.
Thus, PA ~P, a contradiction.
Therefore, P = Q. o
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Chapter 1. Logic and Proofs

§1.5 Basic Proof Methods Il (Indirect Proof)

Show that /2 is an irrational number.

Proof.

Assume the contrary that 4/2 is a rational number.

Then /2 = g for some positive integers p, g satisfying (p, q) = 1.
Thus, g° is an even number since g° = 2p°.

By previous example, g is even; thus g = 2k for some integer k.

2
Then p? is an even number since p?> = % = 2K2.
The previous example again implies that p is an even number.

Therefore, (p, q) # 1, a contradiction.

Therefore, v/2 is an irrational number. o

V.
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Chapter 1. Logic and Proofs

§1.5 Basic Proof Methods Il (Indirect Proof)

Show that the collection of primes is infinite.

Proof.
Assume the contrary that there are only finitely many primes.

Suppose that p; < ps < --- < pi are all the prime numbers.

Let n=pip2---px+ 1. Then n> p, and n is not a prime.
Therefore, n has a prime divisor ( i F1#ic) g; that is, g is a prime
and g|n.

Since g is a prime, g = p; for some 1 < j < k.

However, q = p; does not divide n, a contradiction.

Therefore, the collection of primes is infinite. o
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Chapter 1. Logic and Proofs

§1.5 Basic Proof Methods Il (Indirect Proof)

There are n people (n = 2) at a party, some of whom are friends.
Prove that there exists someone at the party who is friends with the
same number of party-goers as another person.

PR EPA-BEEY TG A BAAE Y PP Kk
— 5 o

Proof.

Assume the contrary that no two party-goers have the same number
of friends. Note that the number of friends should range from 0
to n — 1; thus by the assumption that no two party-goers have the
same number of friends, there must be one party-goer who has no
friend, while there must be one party-goer who has n — 1 friends.
This is impossible because the one who has n— 1 friends is a friend
of the one who has no friend. =

v
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Chapter 1. Logic and Proofs

§1.5 Basic Proof Methods Il (Indirect Proof)

Some mathematical theorems are of the form P < Q. As explained
before, this means P = Q and Q = P; thus one should establish
these two implication separately.

¢ General format of proving P < Q:

Proof of P < Q)

Proof.

(i) Show that P = Q using the methods mentioned above.

(ii) Show that Q = P using the methods mentioned above.
Therefore, P < Q. o
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Chapter 1. Logic and Proofs

§1.5 Basic Proof Methods Il (Indirect Proof)

Let m, n be integers. Show that m and n have the same parity (F
+ F 18) if and only if m?® + n? is even.

(=) If m and n are both even, then m = 2k and n = 2¢ for some
integers k and £. Therefore, m* + n* = 2(2k* + 2¢?) which
is even. If m and n are both odd, then m = 2k + 1 and

n = 2¢ + 1 for some integers k and £. Therefore, m*> + n?> =
2(2k2 + 202 + 2k + 20 + 1) which is even. Therefore, if m and

n have the same parity, m> 4+ n? is even. o

v
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Chapter 1. Logic and Proofs

§1.5 Basic Proof Methods Il (Indirect Proof)

Let m, n be integers. Show that m and n have the same parity (F
+ F 18) if and only if m?® + n? is even.

(<) Assume the contrary that there are m and n having opposite

parity. W.L.O.G. we can assume that m is even and n is odd.
Then m = 2k and n = 2¢ + 1 for some integers k and /.
Therefore, m? + n? = 2(2k? +2¢% +2¢) + 1 which is odd. Thus,
if m and n have opposite parity, then m?+n? is odd. Therefore,

if m?> + n? is even, then m and n have the same parity. o

v
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Chapter 1. Logic and Proofs

§1.5 Basic Proof Methods Il (Indirect Proof)

Remark:

@ Sometimes it requires intermediate equivalent propositions to
show P < Q; that is, one might establish

PeR)ARI<R)A--A(Rim1eR) ARy Q)
to prove P < Q.

@ Often times it is more efficient to show a theorem of the form

“Py, Pg, -+, P, are equivalent” (which means Py, Po, ---,
P, have the same truth value) by showing that P; = Py,
Py = P3, ---, and P, = P;. In other words, one uses the

following relation
[(Pl SP)A(PaePs)a--- APy e P,,)}
< [P1=P3) A (Py=Ps) A A (P,=P1)]
to prove this kind of theorems.



Chapter 1. Logic and Proofs

§1.5 Basic Proof Methods Il (Indirect Proof)

Let x, y be non-negative real numbers such that x — 4y < y — 3x.
Prove that if 3x > 2y, then 12x* 4 10y? < 24xy.

(Direct Proof): Let x,y be non-negative real numbers such that

x — 4y < y — 3x. Suppose that 3x > 2y. Then 4x — 5y < 0 and
3x — 2y > 0. Therefore,

0 > (4x— 5y)(3x — 2y) = 12x% + 10y — 23xy

or equivalently, 12x*> +10y? < 23xy. Since x, y are non-negative real
numbers, 23xy < 24xy; thus 12x% + 10y? < 24xy. o

v
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Chapter 1. Logic and Proofs

§1.5 Basic Proof Methods Il (Indirect Proof)

Let x, y be non-negative real numbers such that x — 4y < y — 3x.
Prove that if 3x > 2y, then 12x* 4 10y? < 24xy.

(Proof by Contraposition): Let x, y be non-negative real numbers
such that x—4y < y— 3x. Assume the contrary that 12x% 4 10y >

24xy. Since x, y are non-negative real numbers,

12x% + 10y* > 24xy > 23xy;

thus (4x — 5y)(3x — 2y) = 12x* + 10y? — 23xy = 0. Since x — 4y <
y — 3x, we find that 4x — 5y < 0; thus 3x — 2y < 0. o

v
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Chapter 1. Logic and Proofs

§1.5 Basic Proof Methods Il (Indirect Proof)

Let x, y be non-negative real numbers such that x — 4y < y — 3x.
Prove that if 3x > 2y, then 12x* 4 10)? < 24xy.

(Proof by Contradiction): Let x, y be non-negative real numbers
such that x—4y < y—3x. Assume that 3x > 2y and 12x% 4 10y >
24xy. Then 4x — 5y < 0 and 3x — 2y > 0; thus

0 > (4x—5y)(3x—2y) = 12x*+8y? —23xy > 24xy—23xy = xy > 0,

where the last inequality follows from the fact that x, y are non-

negative real numbers. Thus, we reach a contradiction 0 > 0. o

v
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Chapter 1. Logic and Proofs
§1.6 Proofs Involving Quantifiers

e General format of proving (V x)P(x) directly:
Note that to establish (V x)P(x) is the same as proving that

“if x is in the universe, then P(x) is true".

Direct Proof of (V x)P(x)

Proof.

Let x be given in the universe. (¥ * %% = jt P~k o 4 & A 5
F PR

Hence P(x) is true.

Therefore, (V x)P(x) is true. o
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Chapter 1. Logic and Proofs
§1.6 Proofs Involving Quantifiers

¢ General format of proving (V x)P(x) by contradiction:

To prove “if x is in the universe, then P(x) is true" by contradiction
is to show that “an x in the universe so that P(x) is false leads to a

contradiction”.

Proof of (V x)P(x) by contradiction
Proof.

Assume (the contrary) that ~ (¥ x)P(x).
Then (3 x) ~P(x).

Let x be an element in the universe such that ~P(x).

Therefore, QA ~Q, a contradiction.
Thus (3x) ~P(x) is false, so (V x)P(x) is true. o
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Chapter 1. Logic and Proofs
§1.6 Proofs Involving Quantifiers

¢ General format of proving (V x)P(x) by contradiction:

To prove “if x is in the universe, then P(x) is true" by contradiction
is to show that “an x in the universe so that P(x) is false leads to a

contradiction”.

Proof of (V x)P(x) by contradiction
Proof.

Assume (the contrary) that ~{¥>3R0H4.
Fhen (Ix) ~P(x).
Let x be an element in the universe such that ~P(x).

Therefore, QA ~Q, a contradiction.
Thus (3x) ~P(x) is false, so (V x)P(x) is true. o
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Chapter 1. Logic and Proofs
§1.6 Proofs Involving Quantifiers

Show that for all xe (O, g) sinx+ cosx > 1.

Proof.
Assume that there exists x € (0,7/2) such that sinx + cosx < 1.
Then 0 < sinx+ cosx < 1; thus

0 < (sinx+cosx)? < 1.

Expanding the square and using the identity sin? x + cos® x = 1, we

find that
0<1+4+2sinxcosx<1

which shows sin xcos x < 0. On the other hand, since x € (0,7/2),
we have sinx > 0 and cosx > 0 so that sin xcos x > 0, a contradic-
tion. Therefore, sinx+ cosx > 1 for all xe (0,7/2). o
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Chapter 1. Logic and Proofs
§1.6 Proofs Involving Quantifiers

e General format of proving (3 x)P(x) directly: Method 1.

The most straight forward way to show that (3 x)P(x) is to give a
precise x in the universe and show that P(x) is true; however, this
usually requires that you makeq some effort to find out which x suits
this requirement.

Constructive Proof of (3 x)P(x)
Proof.
Specify one particular element a.

If necessary, verify that a is in the universe.

Therefore, P(a) is true.
Thus (3x)P(x) is true. a
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Chapter 1. Logic and Proofs
§1.6 Proofs Involving Quantifiers

Show that between two different rational numbers there is a rational
number.

Let a, b be rational numbers and a < b. Let c = a; b Then ce Q
and a < c< b.

Show that there exists a natural number whose fourth power is the
sum of other three fourth power.

20615693 is one such number because it is a natural number and

20615673* = 2682440* + 1536539* + 18796760 . o
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Chapter 1. Logic and Proofs
§1.6 Proofs Involving Quantifiers

e General format of proving (3 x)P(x) directly: Method 2.

To show (3 x)P(x), often times it is almost impossible to provide a
precise x so that P(x) is true. Proving (3 x)P(x) directly (not proving
by contradiction) then usually requires a lot of abstract steps.

Non-Constructive Proof of (3 x)P(x)
Proof.

Therefore, P(a) is true.
Thus (3 x)P(x) is true. o
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Chapter 1. Logic and Proofs
§1.6 Proofs Involving Quantifiers

Let f: [0,1] — [0, 1] be continuous. Show that

(Axe[0,1])(x=f(x).

Q If £(0) =0 or f(1) =1, then (Ix€ [0,1])(x = f(x)).

Q If f(0) # 0 and f(1) # 1, then 0 < £(0), (1) < 1.
Define g: [0,1] — R by g(x) = x— f(x). Then g is continuous
on [0,1]. Moreover, g(0) < 0 and g(1) > 0. Thus, the Inter-
mediate Value Theorem implies that there exists x such that

0 < x <1 and g(x) = 0 (which is the same as x = f(x)).
In either cases, there exists x € [0, 1] such that x = f(x). o
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Chapter 1. Logic and Proofs
§1.6 Proofs Involving Quantifiers

e General format of proving (3 x)P(x) by contradiction:

Proof of (3 x)P(x) by contradiction
Proof.

Suppose the contrary that ~ (3 x)P(x).
Then (V x) ~P(x).

Therefore, QA ~Q, a contradiction.
Thus (3 x)P(x) is true. o
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Chapter 1. Logic and Proofs
§1.6 Proofs Involving Quantifiers

Let S be a set of 6 positive integers, each less than or equal to 10.

Prove that there exists a pair of integers in S whose sum is 11.

Suppose the contrary that every pair of integers in S has a sum

different from 11. Then S contains at most one element from each
of the sets {1, 10}, {2,9}, {3,8}, {4,7} and {5,6}. Thus, S contains
at most 5 elements, a contradiction. We conclude that S contains

a pair of numbers whose sum in 11. o

v
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Chapter 1. Logic and Proofs
§1.6 Proofs Involving Quantifiers

¢ General format of proving (3 !x)P(x):

Proof of (3!x)P(x)
Proof.

(i) Prove that (3x)P(x) is true using the methods mentioned
above.

(i) Prove that (Vy)(Y2)[(P(y) A P(2)) = (y = 2)]:
Assume that y and z are elements in the universe such that
P(y) and P(z) are true.

Therefore, y = z.
From (i) and (ii) we conclude that (3 !x)P(x) is true. o

Ching-hsiao Cheng A##E MA-1015A



Chapter 1. Logic and Proofs
§1.6 Proofs Involving Quantifiers

Prove that every non-zero real number has a unique multiplicative
inverse.

Proof.
Let x be a non-zero real number.

Q Let y= )% Since x # 0, y is a real number. Moreover, xy = 1;
thus GyeR)(xy=1).

@ Suppose that y and z are real numbers such that xy = xz = 1.
Then x(y — z) = xy — xz= 0. By the fact that x # 0, we must
have y = z.

Therefore, (Vx# 0)(3!y)(xy = 1). o
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