Definition

Let A and B be sets.

- The union of A and B, denoted by $A \cup B$, is the set $\{x \mid (x \in A) \lor (x \in B)\}$.
- **2** The **intersection of** A **and** B, denoted by $A \cap B$, is the set $\{x \mid (x \in A) \land (x \in B)\}$.
- **3** The **difference of** A **and** B, denoted by A B, is the set $\{x \mid (x \in A) \land (x \notin B)\}$.

Definition

Two sets A and B are said to be **disjoint** if $A \cap B = \emptyset$.

• Venn diagrams:

$\mathsf{Theorem}$

Let A, B and C be sets. Then

(a)
$$A \subseteq A \cup B$$
; (b) $A \cap B \subseteq A$; (c) $A \cap \emptyset = \emptyset$; (d) $A \cup \emptyset = A$;

(e)
$$A \cap A = A$$
; (f) $A \cup A = A$; (g) $A \setminus \emptyset = A$; (h) $\emptyset \setminus A = \emptyset$;

(i)
$$A \cup B = B \cup A$$
;
(j) $A \cap B = B \cap A$; (commutative laws)

$$\begin{array}{l} \text{(k) } A \cup (B \cup C) = (A \cup B) \cup C; \\ \text{(ℓ) } A \cap (B \cap C) = (A \cap B) \cap C; \end{array} \} \quad \text{(associative laws)}$$

$$(\ell) \ A \cap (B \cap C) = (A \cap B) \cap C; \ \}$$
 (associative)

$$\begin{array}{l} \text{(m) } A \cap (B \cup C) = (A \cap B) \cup (A \cap C); \\ \text{(n) } A \cup (B \cap C) = (A \cup B) \cap (A \cup C); \end{array} \} \quad \text{(distributive laws)}$$

(o)
$$A \subseteq B \Leftrightarrow A \cup B = B$$
; (p) $A \subseteq B \Leftrightarrow A \cap B = A$;

(q)
$$A \subseteq B \Rightarrow A \cup C \subseteq B \cup C$$
; (r) $A \subseteq B \Rightarrow A \cap C \subseteq B \cap C$.

Note: $(A \cup B) \cap C \neq A \cup (B \cap C)$ in general!

Proof of (m) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

Let x be an element in the universe, and P, Q and R denote the propositions $x \in A$, $x \in B$ and $x \in C$, respectively. Note that from the truth table, we conclude that

$$P \wedge (Q \vee R) \Leftrightarrow [(P \wedge Q) \vee (P \wedge R)],$$

1 Let $x \in A \cap (B \cup C)$. Then $x \in A$ and $x \in B \cup C$; thus the proposition $P \wedge (Q \vee R)$ is true. Therefore, the proposition $[(P \wedge Q) \vee (P \wedge R)]$ is also true which implies that $x \in A \cap B$ or $x \in A \cap C$; thus

$$A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$$
.

2 Working conversely, we find that if $x \in A \cap B$ or $x \in A \cap C$, then $x \in A \cap (B \cup C)$. Therefore,

$$(A \cap B) \cup (A \cap C) \subseteq A \cap (B \cup C)$$
.

Proof of (m) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

Let $x \in A \cap (B \cup C)$. Then $x \in A$ and $x \in B \cup C$. Thus,

- \bullet if $x \in B$, then $x \in A \cap B$.
- 2 if $x \in C$, then $x \in A \cap C$.

Therefore, $x \in A \cap B$ or $x \in A \cap C$ which shows $x \in (A \cap B) \cup (A \cap C)$; thus we establish that

$$A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$$
.

On the other hand, suppose that $x \in (A \cap B) \cup (A \cap C)$.

- 2 if $x \in A \cap C$, then $x \in A$ and $x \in C$.

In either cases, $x \in A$; thus if $x \in (A \cap B) \cup (A \cap C)$, then $x \in A$ but at the same time $x \in B$ or $x \in C$. Thus, $x \in A$ and $x \in B \cup C$ which shows that $x \in A \cap (B \cup C)$. Therefore,

$$(A \cap B) \cup (A \cap C) \subseteq A \cap (B \cup C)$$
.

Proof of (p) $A \subseteq B \Leftrightarrow A \cap B = A$.

- (⇒) Suppose that $A \subseteq B$. Let x be an element in A. Then $x \in B$ since $A \subseteq B$; thus $x \in A \cap B$ which implies that $A \subseteq A \cap B$. On the other hand, it is clear that $A \cap B \subseteq A$, so we conclude that $A \cap B = A$.
- (\Leftarrow) Suppose that $A \cap B = A$. Let x be an element in A. Then $x \in A \cap B$ which shows that $x \in B$. Therefore, $A \subseteq B$.

Definition

Let *U* be the universe and $A \subseteq U$. The **complement** (補集) of *A*, denoted by A^{\complement} , is the set U - A.

$\mathsf{Theorem}$

Let U be the universe, and A, $B \subseteq U$. Then

(a)
$$(A^{\complement})^{\complement} = A$$
. (b) $A \cup A^{\complement} = U$.

(b)
$$A \cup A^{\complement} = U$$
.

(c)
$$A \cap A^{\complement} = \emptyset$$
.

(c)
$$A \cap A^{\complement} = \emptyset$$
. (d) $A - B = A \cap B^{\complement}$.

(e)
$$A \subseteq B$$
 if and only if $B^{\complement} \subseteq A^{\complement}$.

(f)
$$A \cap B = \emptyset$$
 if and only if $A \subseteq B^{\complement}$

(g)
$$(A \cup B)^{\complement} = A^{\complement} \cap B^{\complement}$$
.

$$\begin{array}{c} \text{(h)} \ (A \cap B)^{\complement} = A^{\complement} \cup B^{\complement}. \end{array}$$

(De Morgan's Law)

Proof of (a) $(A^{\complement})^{\complement} = A$.

By the definition of the complement, $x \in (A^{\complement})^{\complement}$ if and only if $x \notin A^{\complement}$ if and only if $x \in A$.

Proof of (e) $A \subseteq B \Leftrightarrow B^{\mathbb{C}} \subseteq A^{\mathbb{C}}$.

By the equivalence of $P\Rightarrow Q$ and $\sim Q\Rightarrow \sim P$, we conclude that

$$(\forall x) [(x \in A) \Rightarrow (x \in B)] \quad \Leftrightarrow \quad (\forall x) [(x \notin B) \Rightarrow (x \notin A)]$$

and the bi-directional statement is identical to that

$$A \subseteq B \Leftrightarrow B^{\mathbb{C}} \subseteq A^{\mathbb{C}}$$
.

Alternative proof of (e) $A \subseteq B \Leftrightarrow B^c \subseteq A^c$.

Using (a), it suffices to show that $A \subseteq B \Rightarrow B^{\mathbb{C}} \subseteq A^{\mathbb{C}}$. Suppose that $A \subseteq B$, but $B^{\mathbb{C}} \nsubseteq A^{\mathbb{C}}$. Then there exists $x \in B^{\mathbb{C}}$ and $x \in A$; however, by the fact that $A \subseteq B$, x has to belong to B, a contradiction.

Proof of (g) $(A \cup B)^{\mathbb{C}} = A^{\mathbb{C}} \cap B^{\mathbb{C}}$.

By the equivalence of $\sim\!(P\vee Q)$ and $(\sim\!P)\wedge(\sim\!Q),$ we find that

$$(\forall \, x) \sim \big[\big(x \in A \big) \, \lor \, \big(x \in B \big) \big] \quad \Leftrightarrow \quad (\forall \, x) \big[\big(x \notin A \big) \, \land \, \big(x \notin B \big) \big]$$

and the bi-directional statement is identical to that

$$(A \cup B)^{\complement} = A^{\complement} \cap B^{\complement}.$$

Alternative proof of (g) $(A \cup B)^{\mathbb{C}} = A^{\mathbb{C}} \cap B^{\mathbb{C}}$.

Let *x* be an element in the universe.

$$x \in (A \cup B)^{\mathbb{C}}$$
 if and only if $x \notin A \cup B$
if and only if it is not the case that $x \in A$ or $x \in B$
if and only if $x \notin A$ and $x \notin B$
if and only if $x \in A^{\mathbb{C}}$ and $x \in B^{\mathbb{C}}$
if and only if $x \in A^{\mathbb{C}} \cap B^{\mathbb{C}}$.

Definition

An **ordered pair** (a, b) is an object formed from two objects a and b, where a is called the **first coordinate** and b the **second coordinate**. Two ordered pairs are equal whenever their corresponding coordinates are the same.

An **ordered** n-**tuples** (a_1, a_2, \cdots, a_n) is an object formed from n objects a_1, a_2, \cdots, a_n , where a_j is called the j-th coordinate. Two n-tuples (a_1, a_2, \cdots, a_n) , (c_1, c_2, \cdots, c_n) are equal if $a_i = c_i$ for $i \in \{1, 2, \cdots, n\}$.

Definition

Let A and B be sets. The product of A and B, denoted by $A \times B$, is

$$A \times B = \{(a, b) \mid a \in A, b \in B\}.$$

The product of three or more sets are defined similarly.

Example

Let $A=\{1,3,5\}$ and $B=\{\star,\diamond\}$. Then $A\times B=\left\{(1,\star),(3,\star),(5,\star),(1,\diamond),(3,\diamond),(5,\diamond)\right\}.$

Theorem

If A, B, C and D are sets, then

- (a) $A \times (B \cup C) = (A \times B) \cup (A \times C)$.
- (b) $A \times (B \cap C) = (A \times B) \cap (A \times C)$.
- (c) $A \times \emptyset = \emptyset$.
- (d) $(A \times B) \cap (C \times D) = (A \cap C) \times (B \cap D)$.
- (e) $(A \times B) \cup (C \times D) \subseteq (A \cup C) \times (B \cup D)$.
- (f) $(A \times B) \cap (B \times A) = (A \cap B) \times (A \cap B)$.

Definition

Let \mathcal{F} be a family of sets.

1 The *union* of the family \mathcal{F} or the *union* over \mathcal{F} , denoted by $\bigcup A$, is the set $\{x \mid x \in A \text{ for some } A \in \mathcal{F}\}$. Therefore, $x \in \bigcup A$ if and only if $(\exists A \in \mathcal{F})(x \in A)$.

2 The *intersection* of the family \mathcal{F} or the *intersection* over \mathcal{F} , denoted by $\bigcap A$, is the set $\{x \mid x \in A \text{ for all } A \in \mathcal{F}\}$. Therefore. $x \in \bigcap A$ if and only if $(\forall A \in \mathcal{F})(x \in A)$.

Example

Let ${\mathcal F}$ be the collection of sets given by

$$\mathcal{F} = \left\{ \left[\frac{1}{n}, 2 - \frac{1}{n} \right] \mid n \in \mathbb{N} \right\}.$$

Then $\bigcup_{A\in\mathcal{F}}A=(0,2)$ and $\bigcap_{A\in\mathcal{F}}A=\{1\}.$ We also write $\bigcup_{A\in\mathcal{F}}A$ and

$$\bigcap_{A\in\mathcal{F}}A\text{ as }\bigcup_{n=1}^{\infty}\left[\frac{1}{n},2-\frac{1}{n}\right]\text{ and }\bigcap_{n=1}^{A\in\mathcal{S}}\left[\frac{1}{n},2-\frac{1}{n}\right]\text{, respectively.}$$

Example

Let $\ensuremath{\mathcal{F}}$ be the collection of sets given by

$$\mathcal{F} = \left\{ \left(-\frac{1}{n}, 2 + \frac{1}{n} \right) \mid n \in \mathbb{N} \right\}.$$

Then $\bigcup_{A\in\mathcal{F}}A=(-1,3)$ and $\bigcap_{A\in\mathcal{F}}A=[0,2].$ We also write $\bigcup_{A\in\mathcal{F}}A$ and

$$\bigcap_{A \in \mathcal{F}} A \text{ as } \bigcup_{n=1}^{\infty} \left(-\frac{1}{n}, 2 + \frac{1}{n} \right) \text{ and } \bigcap_{n=1}^{\infty} \left(-\frac{1}{n}, 2 + \frac{1}{n} \right), \text{ respectively.}$$

Theorem

Let \mathcal{F} be a family of sets.

- (a) For every set B in the family \mathfrak{F} , $\bigcap A \subseteq B$.
- (b) For every set B in the family \mathfrak{F} , $B \subseteq \{ \}$ A.
- (c) If the family \mathcal{F} is non-empty, then $\bigcap A \subseteq \bigcup A$.

(e)
$$\left(\bigcup_{A\in\mathcal{F}}A\right)^{\complement}=\bigcap_{A\in\mathcal{F}}A^{\complement}.$$

(De Morgan's Law)

Proof of (d) $\left(\bigcap A\right)^{c} = \bigcup A^{c}$.

Let x be an element in the universe. Then

$$x \in \Big(\bigcap_{A \in \mathcal{F}} A\Big)^{\mathbb{C}} \text{ if and only if } x \notin \bigcap_{A \in \mathcal{F}} A$$
 if and only if $\sim \Big(x \in \bigcap_{A \in \mathcal{F}} A\Big)$ if and only if $\sim \Big(\forall \ A \in \mathcal{F}\Big)(x \in A\Big)$ if and only if $(\exists \ A \in \mathcal{F}) \sim (x \in A)$ if and only if $(\exists \ A \in \mathcal{F})(x \notin A)$ if and only if $(\exists \ A \in \mathcal{F})(x \in A^{\mathbb{C}})$ if and only if $x \in \bigcup_{A \in \mathcal{F}} A^{\mathbb{C}}$.

Theorem

Let \mathcal{F} be a non-empty family of sets and B a set.

- **1** If $B \subseteq A$ for all $A \in \mathcal{F}$, then $B \subseteq \bigcap A$. $A \in \mathcal{F}$
- 2 If $A \subseteq B$ for all $A \in \mathcal{F}$, then $| A \subseteq B$.

Proof.

- **1** Suppose that $B \subseteq A$ for all $A \in \mathcal{F}$, and $x \in B$. Then $x \in A$ for all $A \in \mathcal{F}$. Therefore, $(\forall A \in \mathcal{F})(x \in A)$ or equivalently, $x \in \bigcap A$. $A \in \mathcal{F}$
- ② Suppose that $A \subseteq B$ for all $A \in \mathcal{F}$, and $x \in [A]$ Suppose that $A \subseteq B$ for all $A \in \mathcal{F}$, and $A \subseteq A$ for some $A \in \mathcal{F}$. By the fact that $A \subseteq B$, we find that $x \in B$. \square