§2.5 Equivalent Forms of Induction

Theorem (Division Algorithm)

For all integers a and b, where $a \neq 0$, there exist a unique pair of integers (q,r) such that b=aq+r and $0 \leqslant r < |a|$. In notation,

$$(\forall (a,b) \in (\mathbb{Z} \setminus \{0\}) \times \mathbb{Z})(\exists ! (q,r) \in \mathbb{Z} \times \mathbb{Z}) [(a=bq+r) \land (0 \leqslant r < |a|)].$$

Proof.

W.L.O.G., we assume that a>0 and a does not divide b. Define $S=\left\{b-ak\,\middle|\, k\in\mathbb{Z} \text{ and } b-ak\geqslant 0\right\}$.

Then $0 \notin S$ (which implies that $b \neq 0$). It is clear that if b > 0, then $S \neq \emptyset$. If b < 0, then -b > 0; thus the Archimedean property implies that there exists $k \in \mathbb{N}$ such that ak > -b. Therefore, b - a(-k) > 0 which also implies that $S \neq \emptyset$. In either case, S is a non-empty subset of \mathbb{N} ; thus **WOP** implies that S has a smallest element S. Then S has a smallest element S has a smallest S has a small S has a smallest S has a sm

§2.5 Equivalent Forms of Induction

Proof (Cont'd).

Next, we show that r < |a| = a. Assume the contrary that $r \geqslant |a| = a$. Then $b - a(q+1) = b - aq - a = r - a \geqslant 0$. Since we assume that $0 \notin S$, we must have b - a(q+1) > 0. Therefore,

$$0 < b - a(q+1) = r - a < r = b - aq$$

which shows that r is not the smallest element of S, a contradiction.

To complete the proof, we need to show that the pair (q, r) is unique. Suppose that there exist (q_1, r_1) and (q_2, r_2) , where $0 \le r_1, r_2 < |a|$, such that

$$b = aq_1 + r_1 = aq_2 + r_2$$
.

W.L.O.G., we can assume that $r_1 \geqslant r_2$; thus $a(q_2-q_1)=r_1-r_2\geqslant 0$. Therefore, a divides r_1-r_2 which is impossible if $0< r_1-r_2< a$. Therefore, $r_1=r_2$ and then $q_1=q_2$.

Chapter 3. Relations and Partitions

- §3.1 Relations
- §3.2 Equivalence Relations
- §3.3 Partitions
- §3.4 Modular Arithmetic
- §3.5 Ordering Relations

Definition

Let A and B be sets. R is a **relation** from A to B if R is a subset of $A \times B$. A relation from A to A is called a **relation** on A. If $(a,b) \in R$, we say a is R-related (or simply related) to b and write aRb. If $(a,b) \notin R$, we write aRb.

Example

Let R be the relation "is older than" on the set of all people. If a is 32 yrs old, b is 25 yrs old, and c is 45 yrs old, then aRb, cRb, aRc. Similarly, the "less than" relation on $\mathbb R$ is the set $\big\{(x,y)\,\big|\,x< y\big\}$.

Remark:

Let A and B be sets. Every subset of $A \times B$ is a relations from A to B; thus every collection of ordered pairs is a relation. In particular, the empty set \emptyset and the set $A \times B$ are relations from A to B ($R = \emptyset$ is the relation that "nothing" is related, while $R = A \times B$ is the relation that "everything" is related).

Definition

For any set A, the *identity relation on* A is the (diagonal) set $I_A = \{(a, a) \mid a \in A\}$.

Definition

Let A and B be sets, and R be a relation from A to B. The **domain** of R is the set

$$Dom(R) = \{x \in A \mid (\exists y \in B)(xRy)\},\$$

and the range of R is the set

$$\mathsf{Rng}(R) = \{ y \in B \, | \, (\exists \, x \in A)(xRy) \} \, .$$

In other words, the domain of a relation R from A to B is the collection of all first coordinate of ordered pairs in R, and the range of R is the collection of all second coordinates.

Definition

Let A and B be sets, and R be a relation from A to B. The *inverse* of R, denoted by R^{-1} , is the relation

$$R^{-1} = \{(y, x) \in B \times A \mid (x, y) \in R \text{ (or equivalently, } xRy)\}.$$

In other words, xRy if and only if $yR^{-1}x$ or equivalently, $(x, y) \in R$ if and only if $(y, x) \in R^{-1}$.

Example

Let $T = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid y < 4x^2 - 7\}$. To find the inverse of T, we note that

$$(x,y) \in T^{-1} \Leftrightarrow (y,x) \in T \Leftrightarrow x < 4y^2 - 7 \Leftrightarrow x + 7 < 4y^2$$

$$\Leftrightarrow (x,y) \in \left\{ (x,y) \in \mathbb{R} \times \mathbb{R} \,\middle|\, x + 7 < 0 \right\} \cup \left\{ (x,y) \in \mathbb{R} \times \mathbb{R} \,\middle|\, 0 \leqslant \frac{x+7}{4} < y^2 \right\}.$$

Theorem

Let A and B be sets, and R be a relation from A to B.

Proof.

The theorem is concluded by

$$b \in \mathsf{Dom}(R^{-1}) \Leftrightarrow (\exists \ a \in A) \big[(b,a) \in R^{-1} \big] \Leftrightarrow (\exists \ a \in A) \big[(a,b) \in R \big]$$
$$\Leftrightarrow b \in \mathsf{Rng}(R) \ ,$$

and

$$a \in \mathsf{Rng}(R^{-1}) \Leftrightarrow (\exists b \in B)[(b, a) \in R^{-1}] \Leftrightarrow (\exists b \in B)[(a, b) \in R]$$

 $\Leftrightarrow a \in \mathsf{Dom}(R)$.

Definition

Let A, B, C be sets, and R be a relation from A to B, S be a relation from B to C. The **composite** of R and S is a relation from A to C, denoted by $S \circ R$, given by

$$S \circ R = \{(a, c) \in A \times C \mid (\exists b \in B)[(aRb) \land (bSc)]\}.$$

We note that $\mathsf{Dom}(S \circ R) \subseteq \mathsf{Dom}(R)$ and it may happen that $\mathsf{Dom}(S \circ R) \subsetneq \mathsf{Dom}(R)$.

Example

Let $A = \{1, 2, 3, 4, 5\}$, $B = \{p, q, r, s, t\}$ and $C = \{x, y, z, w\}$. Let R be the relation from A to B:

$$R = \{(1, p), (1, q), (2, q), (3, r), (4, s)\}$$

and S be the relation from B to C:

$$S = \{(p, x), (q, x), (q, y), (s, z), (t, z)\}.$$

Then $S \circ R = \{(1, x), (1, y), (2, x), (2, y), (4, z)\}.$

Example

Let
$$R = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid y = x + 1\}$$
 and $S = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid y = x^2\}$. Then $R \circ S = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid y = x^2 + 1\}$,

$$S \circ R = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid y = x + 1\},$$

$$S \circ R = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid y = (x + 1)^2\}.$$

Therefore, $S \circ R \neq R \circ S$.

Theorem

Suppose that A, B, C, D are sets, R be a relation from A to B, S be a relation from B to C, and T be a relation from C to D.

- (a) $(R^{-1})^{-1} = R$.
- (b) $T \circ (S \circ R) = (T \circ S) \circ R$ (so composition is associative).
- (c) $I_B \circ R = R$ and $R \circ I_A = R$.
- (d) $(S \circ R)^{-1} = R^{-1} \circ S^{-1}$.

Proof of (a).

(a) holds since

$$(a,b) \in (R^{-1})^{-1} \Leftrightarrow (b,a) \in R^{-1} \Leftrightarrow (a,b) \in R.$$

Proof of (b) $T \circ (S \circ R) = (T \circ S) \circ R$.

Since $S \circ R$ is a relation from A to C, $T \circ (S \circ R)$ is a relation from $A \to D$. Similarly, $(T \circ S) \circ R$ is also a relation from A to D. Let $(a,d) \in A \times D$. Then

$$(a,d) \in T \circ (S \circ R)$$

$$\Leftrightarrow (\exists c \in C) [(a,c) \in S \circ R \land (c,d) \in T]$$

$$\Leftrightarrow (\exists c \in C)(\exists b \in B)[(a,b) \in R \land (b,c) \in S \land (c,d) \in T]$$

$$\Leftrightarrow (\exists (b,c) \in B \times C) [(a,b) \in R \land (b,c) \in S \land (c,d) \in T]$$

$$\Leftrightarrow (\exists b \in B)(\exists c \in C)[(a,b) \in R \land (b,c) \in S \land (c,d) \in T]$$

$$\Leftrightarrow (\exists b \in B) [(a,b) \in R \land (b,d) \in T \circ S]$$

$$\Leftrightarrow$$
 $(a, d) \in (T \circ S) \circ R$.

Therefore, $T \circ (S \circ R) = (T \circ S) \circ R$.

Proof of (c) $l_B \circ R = R = R \circ l_A$.

Let $(a, b) \in A \times B$ be given. Then

$$(a,b) \in I_B \circ R \Leftrightarrow (\exists c \in B)[(a,c) \in R \land (c,b) \in I_B].$$

Note that $(c, b) \in I_B$ if and only if c = b; thus

$$(\exists c \in B)[(a,c) \in R \land (c,b) \in I_B] \Leftrightarrow (a,b) \in R.$$

Therefore, $(a, b) \in I_B \circ R \Leftrightarrow (a, b) \in R$. Similarly, $(a, b) \in R \circ I_A \Leftrightarrow (a, b) \in R$.

Proof of (d) $(5 \circ R)^{-1} = R^{-1} \circ S^{-1}$.

Let
$$(a, c) \in A \times C$$
. Then $(c, a) \in (S \circ R)^{-1} \Leftrightarrow (a, c) \in S \circ R$

$$\Leftrightarrow (\exists b \in B) [(a, b) \in R \land (b, c) \in S]$$

$$\Leftrightarrow (\exists b \in B) [(c, b) \in S^{-1} \land (b, a) \in R^{-1}]$$

$$\Leftrightarrow (c, a) \in R^{-1} \circ S^{-1}.$$