§3.2 Equivalence Relations

Definition

Let A be a set and R be a relation on A.

- **1** *R* is *reflexive* on *A* if $(\forall x \in A)(xRx)$.
- **2** *R* is *symmetric* on *A* if $[\forall (x, y) \in A \times A](xRy \Leftrightarrow yRx)$.
- R is **transitive** on A if

$$\left[\forall (x, y, z) \in A \times A \times A\right] \left[(xRy) \wedge (yRz) \right] \Rightarrow (xRz) \right].$$

A relation R on A which is reflexive, symmetric and transitive is called an **equivalence relation** on A.

An equivalence relation is often denoted by \sim (the same symbol as negation but \sim as negation is always in front of a proposition while \sim as an equivalence relation is always between two elements in a set).

§3.2 Equivalence Relations

Example

The relation "divides" on $\mathbb N$ is reflexive and transitive, but not symmetric. The relation "is greater than" on $\mathbb N$ is only transitive (遞移律) but not reflexive and transitive.

Example

Let A be a set. The relation "is a subset of" on the power set $\mathfrak{P}(A)$ is reflexive, transitive but not symmetric.

Example

The relation $S = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid x^2 = y^2\}$ is reflexive, symmetric and transitive on \mathbb{R} .

Example

The relation R on \mathbb{Z} defined by $R = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} \mid x + y \text{ is even} \}$ is reflexive, symmetric and transitive.

§3.2 Equivalence Relations

Definition

Let A be a set and R be an equivalence relation on A. For $x \in A$, the **equivalence class of** x **modulo** R (or simply x **mod** R) is a subset of A given by

$$\bar{x} = \{ y \in A \mid xRy \}.$$

Each element of \bar{x} is called a **representative** of this class. The collection of all equivalence classes modulo R, called A **modulo** R, is denoted by A/R (and is the set $A/R = \{\bar{x} \mid x \in A\}$).

Example

The relation $H=\{(1,1),(2,2),(3,3),(1,2),(2,1)\}$ is an equivalence relation on the set $A=\{1,2,3\}$. Then

$$\overline{1} = \overline{2} = \{1,2\}$$
 and $\overline{3} = \{3\}$.

Therefore, $A/H = \{\{1, 2\}, \{3\}\}.$

