Chapter 3. Relations and Partitions

§3.2 Equivalence Relations

Let A be a non-empty set and R be an equivalence relation on A.
For all x,y € A, we have

(a) xe xand x < A. (b) xRy if and only if x=y.

(c) xRy if and only if xn'y = .

It is clear that (a) holds. To see (b) and (c), it suffices to show that
“XRy=x=Vy" and “xRy = xny= "

Assume that xRy. Then if z € x, we have xRz. The symmetry and
transitivity of R then implies that yRz, thus z € y which implies that
x € y. Similarly, y € x; hence we conclude that “xRy = x=y".
Now assume that x Ny # . Then for for some z € A we have
z € XN Y. Therefore, xRz and yRz. Since R is symmetric and

transitive, then xRy which implies that "xRy = xny = J". o
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§3.2 Equivalence Relations

Let m be a fixed positive integer. For x, y € Z, we say x is congruent
to y modulo m (11 m 5 ‘2 #P¥F x 4 y) and write x = y (mod
m) if m divides (x — y). The number m is called the modulus of
the congruence.

Using 4 as the modulus, we have
3 =3 (mod 4) because 4 divides 3 -3 =0,

9 =5 (mod 4) because 4 divides 9 —5 =4,
—27 =1 (mod 4) because 4 divides —27 — 1 = —28,
20 = 8 (mod 4) because 4 divides 20 — 8 = 12,
100 = 0 (mod 4) because 4 divides 100 — 0 = 100.
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For every fixed positive integer m, the relation “congruence modulo
m" is an equivalence relation on 7.

Proof.

O (Reflexivity) It is easy to see that x = x (mod m) for all xe€ Z.
Therefore, congruence modulo m is reflexive on Z.

@ (Symmetry) Assume that x = y (mod m). Then m divides
x — y; that is, x — y = mk for some k € Z. Therefore, y — x =
m(—k) which implies that m divides y — x; thus y = x (mod
m).

© (Transitivity) Assume that x = y (mod m) and y = z (mod
m). Then x—y = mk and y — z = m{ for some k, ¢ € Z.
Therefore, x—z = m(k—+{) which implies that m divides x— z
thus x = z (mod m). o
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Definition

The set of equivalence classes for the relation congruence modulo

m is denoted by Z,.

Remark: The elements of Z,, are sometimes called the residue (or
remainder) classes modulo m.

For congruence modulo 4, there are four equivalence classes:
0={-,-16,—-12,—-8,—4,0,4,8,12,16,--- } = {4k| ke Z},
1={-,-15,-11,-7,-3,1,5,9,13,17,--- } = {4k + 1 |ke Z},
2={--,-14,-10,—6,-2,2,6,10,14,18,- - - } = {4k + 2| ke Z},
3={-,-13,-9,-5,-1,3,7,11,15,19, - - } = {4k + 3 |ke Z} .
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In general, we will prove that the equivalence relation “congruence
modulo m" produces m equivalence classes

j={mk+j|keZ}, j=0,1,--- ,m—1.

The collection of these equivalence classes, by definition Z/(mod m),
is usually denoted by Z,,.

Theorem
Let m be a fixed positive integer. Then

© Forintegers x and y, x =y (mod m) if and only if the remainder
when x is divided by m equals the remainder when y divided by

m.

@ 7., consists of m distinct equivalence classes:

Zm = {0.1,--+ ,m—1}.

v
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O For a given x € Z, let (q(x),r(x)) denote the unique pair in

7 x 7 obtained by the division algorithm satisfying
x=mq(x)+r(x) and 0<r(x)<m.
Then
x =y (mod m) < m divides x— y
< m divides m(q(x) — q(y)) + r(x) — r(y)
< m divides r(x) — r(y)
< r(x)—ry) =0.
where the last equivalence following from the fact that 0 <
r(x), r(y) < m. -
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Proof. (Cont'd).

@ Using D, xand y are in the same equivalence classes (produced
by the equivalence relation “congruence modulo m") if and only
if x and y has the same remainder when they are divided by m.
Therefore, we find that

x={mk+r(x)|keZ} =r(x) VxeZ.

Since r(x) has values from {0, 1,--- , m—1}, we find that Z,, =
{0,1,---,m—1}. The proof is completed if we show that
knj= @ if k+# jand kje {0,1,---,m— 1}. However, if

x € kN J, then
x=mq; + k=mqy +j

which is impossible since k # j and k,j € {0,1,--- ,m — 1}.
Therefore, there are exactly m equivalence classes. E
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Definition
Let A be a non-empty set. P is a partition of A if P is a collection
of subsets of A such that

Q if Xe P, then X # .
Q if Xe Pand Ye P, then X=Yor Xn Y=.

Q0 U X=A
XeP
In other words, a partition of a set A is a pairwise disjoint collection

of non-empty subsets of A whose union is A.

Ching-hsiao Cheng A##E MA-1015A



Chapter 3. Relations and Partitions

§3.3 Partitions

The family G = {[n,n+ 1)| n€ Z} is a partition of R.

Each of the following is a partition of Z:

Q@ P = {E, D}, where E is the collection of even integers and D is
the collection of odd integers.

Q@ X = {N,{0},Z}, where Z~ is the collection of negative inte-
gers.

O = {A| ke Z}, where Ay = {3k, 3k+ 1,3k + 2}.
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If R is an equivalent relation on a non-empty set A, then A/R is a
partition of A.

First of all, each equivalence class x € A/R must be non-empty

since it contains x. Let x and y be two equivalence classes in A/R.
If XNy # &, then there exists z€ xn y which implies that xRz and
yRz. By the symmetry and the transitivity of R we have xRy which
implies that x =y.

Finally, it is clear that | J X < A since each x £ A. On the other

x€A/R
hand, since each y € A belongs to the equivalence class y, we must
have Ac |J x. Therefore, A= |J x o
x€A/R xeA/R
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Let P be a partition of a non-empty set A. For x,y € A, define xQy
if and only if there exists C € P such that x,y e C. Then

@ Q is an equivalence relation on A.

Q@ A/Q="P.

It is clear that Q is reflexive and symmetric on A, so it suffices to
show the transitivity of @ to complete (D). Suppose that xQy and
yQz. By the definition of the relation Q there exists C; and G, in
P such that x,y € C; and y,z € Cy; hence GG n Gy # . Then
C, = G, by the fact that P is a partition and C;, C € P. Therefore,
x,z€ C; which implies that xQz. =
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Proof. (Cont'd).
Next, we claim that if C € P, then xe Cif and only if x= C. It
suffices to show the direction “=" since x € x.

Suppose that Ce P and xe C.

@ "Cc x": Let ye C be given. By the fact that xe C we must
have y@x. Therefore, y € x which shows C C x.

@ "x< C": Let y € x be given. Then there exists C e P such
that x, y € C. By the fact that x e C, we find that Cn C # .
Since P is a partition of A and C, Ce P, we must have C = NC;
thus y € C. Therefore, x < C. 5

v
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Proof. (Cont'd).

Now we show that A/Q = P. If C€ P, then C # J; thus there
exists x € C for some x € A. Then the claim above shows that
C=xe A/Q. Therefore, P = A/Q. On the other hand, if xe A/Q,
by the fact that P is a partition of A, there exists C € P such
that x € C. Then the claim above shows that x = C. Therefore,

A/Qc P. o

o

Remark: The relation @ defined in the theorem proved above is
called the equivalence relation associated with the partition P.
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