§3.3 Partitions

Example

Let $A=\{1,2,3,4\}$, and let $\mathcal{P}=\left\{\{1\},\{2,3\},\{4\}\right\}$ be a partition of A with three sets. The equivalence relation Q associated with \mathcal{P} is $\left\{(1,1),(2,2),(3,3),(4,4),(2,3),(3,2)\right\}$. The three equivalence classes for Q are $\overline{1}=\{1\},\ \overline{2}=\overline{3}=\{2,3\}$ and $\overline{4}=\{4\}$. The collection of all equivalence classes A/Q is precisely \mathcal{P} .

Example

The collect $\mathcal{P} = \{A_0, A_1, A_2, A_3\}$, where

$$A_j = \{4k + j \mid k \in \mathbb{Z}\} \text{ for } j = \{0, 1, 2, 3\},\$$

is a partition of \mathbb{Z} because of the division algorithm. The equivalence relation associated with the partition \mathcal{P} is the relation of congruence modulo 4, and each A_j is the residue class of j modulo 4 for j=0,1,2,3.

Theorem

Let m be a positive integer and a, b, c and d be integers. If $a = c \pmod{m}$ and $b = d \pmod{m}$, then $a + b = c + d \pmod{m}$ and $a \cdot b = c \cdot d \pmod{m}$.

Proof.

Since $a=c \pmod m$ and $b=d \pmod m$, we have $a-c=mk_1$ and $b-d=mk_2$ for some $k_1,k_2\in\mathbb{Z}$. Then

$$a + b = c + mk_1 + d + mk_2 = c + d + m(k_1 + k_2)$$

and

$$a \cdot b = (c + mk_1) \cdot (d + mk_2) = c \cdot d + m(c \cdot k_2 + d \cdot k_1 + k_1 \cdot k_2).$$

Therefore, $a + b = c + d \pmod{m}$ and $a \cdot b = c \cdot d \pmod{m}$.

Definition

For each natural number m,

- the *sum of the classes* \bar{x} and \bar{y} in \mathbb{Z}_m , denoted by $\bar{x} + \bar{y}$, is defined to be the class containing the integer x + y;
- ② the **product of the classes** \overline{x} and \overline{y} in \mathbb{Z}_m , denoted by $\overline{x} \cdot \overline{y}$, is defined to be the class containing the integer $x \cdot y$.

In symbols, $\bar{x} + \bar{y} = \overline{x + y}$ and $\bar{x} \cdot \bar{y} = \overline{x \cdot y}$.

Example

In \mathbb{Z}_6 , $\overline{5} + \overline{3} = \overline{2}$ and $\overline{4} \cdot \overline{5} = \overline{2}$.

Example

In
$$\mathbb{Z}_8$$
, $(\overline{5}+\overline{7})\cdot(\overline{6}+\overline{5})=\overline{12}\cdot\overline{11}=\overline{4}\cdot\overline{3}=\overline{12}=\overline{4}$.

Example

Find $\overline{3^{63}}$ in \mathbb{Z}_7 . Since

$$\bar{3^1} = \bar{3} \,, \quad \bar{3^2} = \bar{2} \,, \quad \bar{3^3} = \bar{6} \,, \quad \bar{3^4} = \bar{4} \,, \quad \bar{3^5} = \bar{5} \,, \quad \bar{3^6} = \bar{1} \,,$$

we have $\overline{3^{63}} = \overline{3^{60} \cdot 3^3} = \overline{6}$.

Example

For every integer k, 6 divides $k^3 + 5k$. In fact, by the division algorithm, for each $k \in \mathbb{Z}$ there exists a unique pair (q, r) such that k = 6q + r for some $0 \le r < 5$. Therefore, in \mathbb{Z}_6 we have

$$\overline{k^3 + 5k} = \overline{(6q + r)^3 + 5(6q + r)} = \overline{r^3} + \overline{5 \cdot r}$$
$$= \overline{r^3} + \overline{(-1) \cdot r} = \overline{r^3 - r}.$$

It is clear that then $\overline{k^3 + 5k} = \overline{0}$ since

$$\overline{0^3 - 0} = \overline{1^3 - 1} = \overline{2^3 - 2} = \overline{3^3 - 3} = \overline{4^3 - 4} = \overline{5^3 - 5}$$
.

Theorem

Let m be a positive composite integer. Then there exists non-zero equivalence classes \bar{x} and \bar{y} in \mathbb{Z}_m such that $\bar{x} \cdot \bar{y} = \bar{0}$.

Proof.

Since m is a positive composite integer, $m=x\cdot y$ for some $x,y\in\mathbb{N}$, 1< x,y< m. Since 1< x,y< m, $\overline{x},\overline{y}\neq \overline{0}$. Therefore, in \mathbb{Z}_m $\overline{0}=\overline{m}=\overline{x}\cdot\overline{y}$ which concludes the theorem.

Theorem

Let p be a prime. If $\bar{x} \cdot \bar{y} = \bar{0}$ in \mathbb{Z}_p , then either $\bar{x} = \bar{0}$ or $\bar{y} = \bar{0}$.

Proof.

Let $\bar{x}, \bar{y} \in \mathbb{Z}_p$ and $\bar{x} \cdot \bar{y} = \bar{0}$. Then $x \cdot y = 0 \pmod{p}$. Therefore, p divides $x \cdot y$. Since p is prime, p|x or p|y which implies that $\bar{x} = \bar{0}$ or $\bar{y} = \bar{0}$.

Theorem

Let p be a prime. If $xy = xz \pmod{p}$ and $x \neq 0 \pmod{p}$, then $y = z \pmod{p}$.

Proof.

If $xy = xz \pmod{p}$, then $x(y - z) = 0 \pmod{p}$. By the previous theorem $\overline{x} = \overline{0}$ or $\overline{y - z} = \overline{0}$. Since $x \neq 0 \pmod{p}$, we must have $\overline{y} = \overline{z}$; thus $y = z \pmod{p}$.

Corollary (Cancellation Law for \mathbb{Z}_p)

Let p be a prime, and $\bar{x}, \bar{y}, \bar{z} \in \mathbb{Z}_p$. If $\bar{x} \cdot \bar{y} = \bar{x} \cdot \bar{z}$, then $\bar{x} \neq \bar{0}$ or $\bar{y} = \bar{z}$.