Definition

Let $f: A \to B$ be a function, and $X \subseteq A$, $Y \subseteq B$. The *image* of X (under f) or *image set* of X, denoted by f(X), is the set

$$f(X) = \{ y \in B \mid y = f(x) \text{ for some } x \in X \} = \{ f(x) \mid x \in X \},$$

and the **pre-image** of Y (under f) or the **inverse image** of Y, denoted by $f^{-1}(Y)$, is the set

$$f^{-1}(Y) = \{x \in A \mid f(x) \in Y\}.$$

Remark: Here are some facts about images of sets that follow from the definitions:

- (a) If $a \in D$, then $f(a) \in f(D)$.
- (b) If $a \in f^{-1}(E)$, then $f(a) \in E$.
- (c) If $f(a) \in E$, then $a \in f^{-1}(E)$.
- (d) If $f(a) \in f(D)$ and f is one-to-one, then $a \in D$.

Theorem

Let $f: A \to B$ be a function. Suppose that C, D are subsets of A, and E, F are subsets of B. Then

- $f(C \cap D) \subseteq f(C) \cap f(D)$. In particular, if $C \subseteq D$, then $f(C) \subseteq f(D)$.
- $2 f(C \cup D) = f(C) \cup f(D).$
- **③** $f^{-1}(E \cap F) = f^{-1}(E) \cap f^{-1}(F)$. In particular, if $E \subseteq F$, then $f^{-1}(E) \subseteq f^{-1}(F)$.
- **⑤** $C \subseteq f^{-1}(f(C))$.
- **o** $f(f^{-1}(E))$ ⊆ E.

Proof of $f(C \cap D) \subseteq f(C) \cap f(D)$.

Let $y \in f(C \cap D)$. Then there exists $x \in C \cap D$ such that y = f(x). Therefore, $y \in f(C)$ and $y \in f(D)$; thus $y \in f(C) \cap f(D)$.

Remark: It is possible that $f(C \cap D) \subsetneq f(C) \cap f(D)$. For example, $f(x) = x^2$, $C = (-\infty, 0)$ and $D = (0, \infty)$. Then $C \cap D = \emptyset$ which implies that $f(C \cap D) = \emptyset$; however, $f(C) = f(D) = (0, \infty)$.

Proof of $f(C \cup D) = f(C) \cup f(D)$.

Let $y \in B$ be given. Then

$$y \in f(C \cup D) \Leftrightarrow (\exists x \in C \cup D) (y = f(x))$$

$$\Leftrightarrow (\exists x \in C) (y = f(x)) \lor (\exists x \in D) (y = f(x))$$

$$\Leftrightarrow (y \in f(C)) \lor (y \in f(D))$$

$$\Leftrightarrow y \in f(C) \cup f(D).$$

Proof of $f^{-1}(E \cap F) = f^{-1}(E) \cap f^{-1}(F)$.

Let $x \in A$ be given. Then

$$x \in f^{-1}(E \cap F) \Leftrightarrow f(x) \in E \cap F$$

$$\Leftrightarrow (f(x) \in E) \land (f(x) \in F)$$

$$\Leftrightarrow (x \in f^{-1}(E)) \land (x \in f^{-1}(F))$$

$$\Leftrightarrow x \in f^{-1}(E) \cap f^{-1}(F).$$

Proof of $f^{-1}(E \cup F) = f^{-1}(E) \cup f^{-1}(F)$.

Let $x \in A$ be given. Then

$$x \in f^{-1}(E \cup F) \Leftrightarrow f(x) \in E \cup F$$

$$\Leftrightarrow (f(x) \in E) \lor (f(x) \in F)$$

$$\Leftrightarrow (x \in f^{-1}(E)) \lor (x \in f^{-1}(F))$$

$$\Leftrightarrow x \in f^{-1}(E) \cup f^{-1}(F).$$

Proof of $C \subseteq f^{-1}(f(C))$.

Let $x \in C$. Then $f(x) \in f(C)$; thus $x \in f^{-1}(f(C))$. Therefore, $C \subseteq f^{-1}(f(C))$.

Remark: It is possible that $C \subsetneq f^{-1}(f(C))$. For example, if $f(x) = x^2$ and C = [0, 1], then $f^{-1}(f(C)) = f^{-1}([0, 1]) = [-1, 1] \supsetneq [0, 1]$.

Proof of $f(f^{-1}(E)) \subseteq E$.

Suppose that $y \in f(f^{-1}(E))$. Then there exists $x \in f^{-1}(E)$ such that f(x) = y. Since $x \in f^{-1}(E)$, there exists $z \in E$ such that f(x) = z. Then y = z which implies that $y \in E$. Therefore, $f(f^{-1}(E)) \subseteq E$. \Box

Remark: It is possible that $f(f^{-1}(E)) \subsetneq E$. For example, if $f(x) = x^2$ and E = [-1, 1], then $f(f^{-1}(E)) = f([0, 1]) = [0, 1] \subsetneq [-1, 1]$.

Chapter 5. Cardinality

- §5.1 Equivalent Sets; Finite Sets
- §5.2 Infinite Sets
- §5.3 Countable Sets

§5.1 Equivalent Sets; Finite Sets

Definition

Two sets A and B are **equivalent** if there exists a one-to-one function from A onto B. The sets are also said to be **in one-to-one correspondence**, and we write $A \approx B$. In notation,

$$A \approx B \Leftrightarrow (\exists f: A \to B)(f \text{ is a bijection}).$$

If A and B are not equivalent, we write $A \approx B$.

Example

The set of even integers is equivalent to the set of odd integers: the function f(x) = x + 1 does the job.

Example

The set of even numbers is equivalent to the set of integers: the function $f(x) = \frac{x}{2}$ does the job.

§5.1 Equivalent Sets; Finite Sets

Example

The set of natural numbers is equivalent to the set of integers.

Example

For $a, b, c, d \in \mathbb{R}$, with a < b and c < d, the open intervals (a, b) and (c, d) are equivalent. Therefore, any two open intervals are equivalent, even when the intervals have different length.

Example

Let $\mathcal F$ be the set of all binary sequences; that is, the set of all functions from $\mathbb N \to \{0,1\}$. Then $\mathcal F \approx \mathcal P(\mathbb N)$, the power set of $\mathbb N$. To see this, we define $\phi: \mathcal F \to \mathcal P(\mathbb N)$ by $\phi(x) \equiv \left\{k \in \mathbb N \,\middle|\, x_k = 1\right\}$ for all $x \in \mathcal F$. Then ϕ is well-defined and $\phi: \mathcal F \xrightarrow{arto} \mathcal P(\mathbb N)$.

§5.1 Equivalent Sets; Finite Sets

Theorem

Equivalence of sets is an equivalence relation on the class of all sets.

Proof.

- **Q** Reflexivity: for all sets A, the identity map I_A is an one-to-one correspondence on A.
- **2 Symmetry**: Suppose that $A \approx B$; that is, there exists a one-to-one correspondence ϕ from A to B. Then ϕ^{-1} is an one-to-one correspondence from B to A; thus $B \approx A$.
- **1 Transitivity**: Suppose that $A \approx B$ and $B \approx C$. Then there exist one-to-one correspondences $\phi: A \xrightarrow{1-1} B$ and $\psi: B \xrightarrow{1-1} C$. Then $\psi \circ \phi: A \to C$ is an one-to-one correspondence; thus $A \approx C$.