Lemma

Suppose that A, B, C and D are sets with $A \approx C$ and $B \approx D$.

- **1** If A and B are disjoint and C and D are disjoint, then $A \cup B \approx C \cup D$.

Proof.

Suppose that $\phi: A \xrightarrow[onto]{1-1} C$ and $\psi: B \xrightarrow[onto]{1-1} D$.

- **1** Then $\phi \cup \psi : A \cup B \rightarrow C \cup D$ is an one-to-one correspondence.
- 2 Let $f: A \times B \to C \times D$ be given by

$$f(a,b) = (\phi(a), \psi(b)).$$

Then f is an one-to-one correspondence from $A \times B$ to $C \times D$.

Definition

For each natural number k, let $\mathbb{N}_k = \{1, 2, \cdots, k\}$. A set S is **finite** if $S = \emptyset$ or $S \approx \mathbb{N}_k$ for some $k \in \mathbb{N}$. A set S is **infinite** if S is not a finite set.

Theorem

For $k, j \in \mathbb{N}$, $\mathbb{N}_j \approx \mathbb{N}_k$ if and only if k = j.

Proof.

It suffices to prove the \Rightarrow direction. Suppose that $\phi: \mathbb{N}_k \to \mathbb{N}_j$ is a one-to-one correspondence. W.L.O.G. we can assume that $k \leqslant j$. If k < j, then $\phi(\mathbb{N}_k) = \left\{\phi(1), \phi(2), \cdots, \phi(k)\right\} \neq \mathbb{N}_j$ since the number of elements in $\phi(\mathbb{N}_k)$ and \mathbb{N}_j are different. In other words, if k < j, $\phi: \mathbb{N}_k \to \mathbb{N}_j$ cannot be surjective. This implies that $\mathbb{N}_k \approx \mathbb{N}_j$ if and only if k = j.

Definition

Let S be a finite set. If $S=\emptyset$, then S has *cardinal number* 0 (or *cardinality* 0), and we write #S=0. If $S\approx \mathbb{N}_k$ for some natural number k, then S has *cardinal number* k (or *cardinality* k), and we write #S=k.

Remark: The cardinality of a set S can also be denoted by n(S), \overline{S} , card(S) as well.

Theorem

If A is finite and $B \approx A$, then B is finite.

Lemma

If S is a finite set with cardinality k and x is any object not in S, then $S \cup \{x\}$ is finite and has cardinality k + 1.

Lemma

For every $k \in \mathbb{N}$, every subset of \mathbb{N}_k is finite.

Proof.

Let $S = \{k \in \mathbb{N} \mid \text{the statement "every subset of } \mathbb{N}_k \text{ is finite" holds} \}.$

- There are only two subsets of \mathbb{N}_1 , namely \emptyset and \mathbb{N}_1 . Since \emptyset and \mathbb{N}_1 are both finite, we have $1 \in S$.
- ② Suppose that $k \in S$. Then every subset of \mathbb{N}_k is finite. Since $\mathbb{N}_{k+1} = \mathbb{N}_k \cup \{k+1\}$, every subset of \mathbb{N}_{k+1} is either a subset of \mathbb{N}_k , or the union of a subset of \mathbb{N}_k and $\{k+1\}$. By the fact that $k \in S$, we conclude from the previous lemma that every subset of \mathbb{N}_{k+1} is finite.

Therefore, **PMI** implies that $S = \mathbb{N}$.

Theorem

Every subset of a finite set is finite.

Proof.

Let $A \subseteq B$ and B is a finite set.

- **1** If $A = \emptyset$, then A is a finite set (and #A = 0).
- ② If $A \neq \emptyset$, then $B \neq \emptyset$. Since B is finite, there exists $k \in \mathbb{N}$ such that $B \approx N_k$; thus there exists a one-to-one correspondence $\phi : \mathbb{N}_k \to B$. Therefore, $\phi^{-1}(A)$ is a non-empty subset of \mathbb{N}_k , and the previous lemma implies that $\phi^{-1}(A)$ is finite. Since $A \approx \phi^{-1}(A)$, we conclude that A is a finite set.

Theorem

- If A and B are disjoint finite sets, then $A \cup B$ is finite, and $\#(A \cup B) = \#A + \#B$.
- ② If A and B are finite sets, then $A \cup B$ is finite, and $\#(A \cup B) = \#A + \#B \#(A \cap B)$.
- **3** If A_1, A_2, \dots, A_n are finite sets, then $\bigcup_{k=1}^n A_k$ is finite.

Proof.

• W.L.O.G., we assume that $A \approx \mathbb{N}_k$ and $B \approx \mathbb{N}_\ell$ for some $k,\ell \in \mathbb{N}$. Let $H = \{k+1,k+2,\cdots,k+\ell\}$. Then $\mathbb{N}_\ell \approx H$ since $\phi(x) = k+x$ is a one-to-one correspondence from $\mathbb{N}_\ell \to \{k+1,k+2,\cdots,k+\ell\}$. Therefore, $A \cup B \approx \mathbb{N}_k \cup H = \mathbb{N}_{k+\ell}$; thus $\#(A \cup B) = \#A + \#B$.

Proof of $\#(A \cup B) = \#A + \#B - \#(A \cap B)$.

② Note that $A \cup B$ is the disjoint union of A and B - A, where B - A is a subset of a finite set B which makes B - A a finite set. Therefore, $A \cup B$ is finite.

To see $\#(A \cup B) = \#A + \#B - \#(A \cap B)$, using ① it suffices to show that $\#(B - A) = \#B - \#(A \cap B)$. Nevertheless, note that $B = (B - A) \cup (A \cap B)$ in which the union is in fact a disjoint union; thus ① implies that

$$\#B = \#(B - A) + \#(A \cap B)$$

or equivalently,

$$\#(B-A) = \#B - \#(A \cap B)$$
.

Proof.

3 Let A_1, A_2, \cdots be finite sets, and

$$S = \left\{ n \in \mathbb{N} \,\middle|\, \bigcup_{k=1}^n A_k \text{ is finite} \right\}.$$

Then $1 \in S$ by assumption. Suppose that $n \in S$. Then $n+1 \in S$ because of ②. **PMI** then implies that $S = \mathbb{N}$.

Lemma

Let $k \ge 2$ be a natural number. For $x \in \mathbb{N}_k$, $\mathbb{N}_k \setminus \{x\} \approx \mathbb{N}_{k-1}$.

Theorem (Pigeonhole Principle - 鴿籠原理)

Let $n, r \in \mathbb{N}$ and $f : \mathbb{N}_n \to \mathbb{N}_r$ be a function. If n > r, then f is not injective.

Corollary

If #A = n, #B = r and r < n, then there is no one-to-one function from A to B.

Corollary

If A is finite, then A is not equivalent to any of its proper subsets.

Recall that a set A is infinite if A is not finite. By the last corollary in the previous section, if a set is equivalent to one of its proper subset, then that set cannot be finite. Therefore, $\mathbb N$ is not finite since there is a one-to-one correspondence from $\mathbb N$ to the set of even numbers.

The set of natural numbers $\mathbb N$ is a set with infinite cardinality. The standard symbol for the cardinality of $\mathbb N$ is $\mathbb N$. There are two kinds of infinite sets, denumerable (無窮可數) sets and uncountable (不可數) sets.

Definition

A set S is said to be **denumerable** if $S \approx \mathbb{N}$. For a denumerable set S, we say S has cardinal number \aleph_0 (or cardinality \aleph_0) and write $\#S = \aleph_0$.

Example

The set of even numbers and the set of odd numbers are denumerable.

Example

The set $\{p, q, r\} \cup \{n \in \mathbb{N} \mid n \neq 5\}$ is denumerable.

Theorem

The set \mathbb{Z} is denumerable.

Proof.

Consider the function $f: \mathbb{N} \to \mathbb{Z}$ given by

$$f(x) = \begin{cases} \frac{x}{2} & \text{if } x \text{ is even }, \\ \frac{1-x}{2} & \text{if } x \text{ is odd }. \end{cases}$$

Theorem

- **1** The set $\mathbb{N} \times \mathbb{N}$ is denumerable.
- ② If A and B are denumerable sets, then $A \times B$ is denumerable.

Proof.

- Consider the function $F: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ defined by $F(m,n) = 2^{m-1}(2n-1)$. Then $F: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ is bijective.
- ② If A and B are denumerable sets, then $A \approx \mathbb{N}$ and $B \approx \mathbb{N}$. Then $A \times B \approx \mathbb{N} \times \mathbb{N}$; thus $A \times B \approx \mathbb{N}$ since \approx is an equivalence relation.

Definition

A set S is said to be **countable** if S is finite or denumerable. We say S is **uncountable** if S is not countable.

Theorem

The open interval (0,1) is uncountable.

Proof.

Assume the contrary that there exists a bijection $f: \mathbb{N} \to (0,1)$. Write f(k) in decimal expansion (十進位展開); that is,

Here we note that repeated 9's are chosen by preference over terminating decimals; that is, for example, we write $\frac{1}{4}=0.249999\cdots$ instead of $\frac{1}{4}=0.250000\cdots$.

Proof. (Cont'd).

Let $x \in (0,1)$ be such that $x = 0.d_1d_2\cdots$, where

$$d_k = \begin{cases} 5 & \text{if} \quad d_{kk} \neq 5, \\ 3 & \text{if} \quad d_{kk} = 5. \end{cases}$$

(建構一個 x 使其小數點下第 k 位數與 f(k) 的小數點下第 k 位數不相等). Then $x \neq f(k)$ for all $k \in \mathbb{N}$, a contradiction; thus (0,1) is uncountable.

Definition

A set S has cardinal number $\mathbf c$ (or cardinality $\mathbf c$) if S is equivalent to (0,1). We write $\#S=\mathbf c$, which stands for **continuum**.

