Chapter 5. Cardinality

§5.3 Countable Sets

Let S be a non-empty set. The following statements are equivalent:
@ S is countable;
@ there exists a surjection f: N — S;

© there exists an injection f: S — N.

“@=@" First suppose that S = {x1, -+ ,x,} is finite. Define

f:N— S by
Fl k) — Xk ifk<n,
(k) = X, if k=n.

Then f: N — S is a surjection. Now suppose that S is
denumerable. Then by definition of countability, there exists

f: N2=Ls.

onto a

V.
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Chapter 5. Cardinality
§5.3 Countable Sets

@ S is countable;
@ there exists a surjection f: N — §;

Proof. (Cont'd).
“O<=@" W.L.O.G. we assume that S is an infinite set. Let k; = 1.
Since #(S) = w0, S1 = S—{f(k1)} # J; thus Ny = f'(51) isa
non-empty subset of N. By the well-ordered principle (WOP) of
N, N; has a smallest element denoted by k2. Since #(S) = o,
So = S—{f(k1), f(ke)} # &; thus No = f~'(Sy) is a non-empty
subset of N and possesses a smallest element denoted by k3.
We continue this process and obtain a set {kj, ks, -} € N,
where ki < kg < ---, and k; is the smallest element of N;_; =
(S = {f(k), f(ka), -, F(ki-1)}) o
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Proof. (Cont'd).

Claim: f: {kj, ko, --} — Sis one-to-one and onto.

Proof of claim: The injectivity of f is easy to see since
f(kj) ¢ {f(ki),f(ke), -, f(ki-1)} for all j > 2. For sur-
jectivity, assume the contrary that there is s € S such that
s¢ f({ki, ko, --}). Since f: N — S is onto, f~'({s}) is a non-
empty subset of N; thus possesses a smallest element k. Since
s¢ f({ki, ko, - }), there exists £ € N such that k; < k < kp41.
Therefore, k € Ny and k < k1 which contradicts to the fact

that kg1 is the smallest element of N,. o
Let g: N — {ki, ko, -} be defined by g(j) = k;. Then g is

1-1
one-to-one and onto; thus h= go f: N—S.
onto o
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Chapter 5. Cardinality
§5.3 Countable Sets

@ S is countable;
© there exists an injection f: S — N.

Proof. (Cont'd).

"‘O=0@" If S={x1, -+, xn} is finite, we simply let f: S — N be
f(xn) = n. Then fis clearly an injection. If S is denumerable,
by definition there exists g : N%S which implies that f =
g~ ' :S— Nis an injection. o
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Chapter 5. Cardinality
§5.3 Countable Sets

@ S is countable;
© there exists an injection f: S — N.

Proof. (Cont'd).

“<=@" Let f: S— N be an injection. If fis also surjective, then

e 51—_:>N which implies that S is denumerable. Now suppose
onto

that f(S) < N. Since S is non-empty, there exists s € S. Let
g: N — S be defined by

f~t(n) if ne f(S),
gy { ) e A(S)

5 if n¢ f(S).
Then clearly g : N — S is surjective; thus the equivalence
between (D) and (2) implies that S is countable. 5
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§5.3 Countable Sets

We have seen that the set N x N is countable. Now consider the
map f: N x N — N defined by f(m, n) = 2™3". This map is not a
bijection; however, it is an injection; thus the theorem above implies
that N x N is countable.

The set Q" of positive rational numbers is denumerable. Since Q"
is infinite, it suffice to check the countability of Q. Consider the

map f: N2> — Qt defined by f(m, n) = % Then fis onto QF; thus

the theorem above implies that Q7 is countable.
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§5.3 Countable Sets
Any non-empty subset of a countable set is countable.

Proof.

Let S be a countable set, and A be a non-empty subset of S. Since
S is countable, by the previous theorem there exists a surjection
f: N — S. On the other hand, since A is a non-empty subset of S,
there exists a € A. Define

(x) = x ifxeA,
EX=Y 5 ifxe¢ A,

Then g: S — A is a surjection; thus h = gof: N — A is also a
surjection. The previous theorem shows that A is countable. o

A set A is countable if and only if A~ S for some S < N.
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