Basic Mathematics (基礎數學) MA1015A Final Exam

National Central University, Jun. 21 2019

Problem 1. (20%) True or False (是非題): 每題兩分,答對得兩分,答錯倒扣兩分(倒扣至本大題零分為止)

- T 1. If A is finite, then A is not equivalent to any of its proper subsets.
- T 2. A non-empty subset of a countable set is countable.
- T 3. The collection of functions from a finite set A to a countable set B is countable.
- F 4. If $\{x_n\}_{n=1}^{\infty} \subseteq \mathbb{R}\setminus\{0\}$ converges to L, then $\{y_n\}_{n=1}^{\infty}$ given by $y_n = 1/x_n$ converges to 1/L.
- $\boxed{\mathbf{F}}$ 5. If $a < x_n < b$ and $\lim_{n \to \infty} x_n = x$, then a < x < b.
- T 6. A convergence sequence is bounded.
- $\boxed{\text{F}}$ 7. Let f,g be functions such that $g\circ f$ is defined. If $g\circ f$ is continuous, then f is continuous.
- F 8. Let f, g be functions such that $g \circ f$ is defined. If $\lim_{x \to a} f(x) = b$ and $\lim_{y \to b} g(y) = c$, then

$$\lim_{x \to a} (g \circ f)(x) = c.$$

- T 9. Convergent sequences of real numbers has a least upper bound.
- F 10. Divergent sequences of real numbers cannot have a least upper bound.

Problem 2. Write down the definition of the following terminologies.

- 1. (5%) Denumerable sets.
- 2. (5%) Countable sets.
- 3. (5%) An ordered field (assuming that you know the concept of fields and partial orders).
- 4. (5%) Complete ordered field.

Problem 3. (15%) Show that (0,1) is uncountable.

Problem 4. (15%) A sequence $\{x_n\}_{n=1}^{\infty} \subseteq \mathbb{R}$ is said to be a Cauchy sequence if for every $\varepsilon > 0$, there exists N > 0 such that $|x_n - x_m| < \varepsilon$ for all n, m > N. Show that a convergent sequence is a Cauchy sequence.

Proof. Suppose that $\{x_n\}_{n=1}^{\infty} \subseteq \mathbb{R}$ is a convergent sequence with limit L. Let $\varepsilon > 0$ be given. Then there exists N > 0 such that

$$n \geqslant N \Rightarrow |x_n - L| < \frac{\varepsilon}{2}$$
.

Therefore, if $n, m \ge N$,

$$|x_n - x_m| \le |x_n - L| + |x_m - L| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$
.

Problem 5. (15%) Let $I \subseteq \mathbb{R}$ be an interval, and $f: I \to \mathbb{R}$ be a function. Show that f is continuous at a if and only if for every sequence $\{x_n\}_{n=1}^{\infty} \subseteq I$ converging to a, one has $\lim_{n \to \infty} f(x_n) = f(a)$.

Proof. Note that $g: I \to \mathbb{R}$ is continuous at $a \in I$ if and only if

$$(\forall \epsilon > 0)(\exists \delta > 0)(|x - a| < \delta \land x \in I \Rightarrow |g(x) - g(a)| < \varepsilon).$$

(⇒) Let $\{x_n\}_{n=1}^{\infty} \subseteq I$ be a convergent sequence with limit a, and $\varepsilon > 0$ be given. Since f is continuous at a, there exists $\delta > 0$ such that

$$|x - a| < \delta \land x \in I \Rightarrow |f(x) - f(a)| < \varepsilon.$$

Since $\lim_{n\to\infty} x_n = a$, there exists N > 0 such that

$$n \geqslant N \Rightarrow |x_n - a| < \delta$$
.

Therefore, if $n \ge N$, then by the fact that $x_n \in I$ for all $n \in \mathbb{N}$, we have

$$|f(x_n) - f(a)| < \varepsilon.$$

 (\Leftarrow) Suppose the contrary that f is not continuous at a. Then there exists $\varepsilon > 0$ such that

$$(\forall \delta > 0)(|x - a| < \delta \land x \in I \land |f(x) - f(a)| \ge \varepsilon).$$

In particular, for each $\delta = \frac{1}{n}$ with $n \in \mathbb{N}$, there exists $x_n \in I$ satisfying

$$|x_n - a| < \frac{1}{n}$$
 and $|f(x_n) - f(a)| \ge \varepsilon$.

Then the sequence $\{x_n\}_{n=1}^{\infty} \subseteq I$ and $\lim_{n\to\infty} x_n = a$ by the Squeeze Theorem, but $\lim_{n\to\infty} f(x_n) \neq f(a)$ (since $|f(x_n) - f(a)| \ge \varepsilon$ for all $n \in \mathbb{N}$), a contradiction.

Problem 6. Let $A \subseteq B \subseteq \mathbb{R}$ and $A \neq \emptyset$.

- (a) (5%) Show that if sup A exists, then it is unique.
- (b) (10%) Show that if $A \subseteq B$ and $\sup B$ exists, then $\sup A$ exists and $\sup A \leq \sup B$.
- *Proof.* (a) Suppose that b_1, b_2 are both the least upper bounds of A. We note that a least upper bound is also an upper bound. Therefore, by the fact that b_1 is a least upper bound of A and b_2 is an upper bound of A, we find that $b_1 \leq b_2$. Similarly, $b_2 \leq b_1$; thus $b_1 = b_2$.
 - (b) Suppose that $\sup B$ exists. Since $\sup B$ is an upper bound of B, $x \leq \sup B$ for all $x \in B$. Since $A \subseteq B$, $x \in B$ as long as $x \in A$; thus if $x \in A$, $x \leq \sup B$. In other words, $\sup B$ is also an upper bound of A or equivalently, A is bounded from above. By the fact that \mathbb{R} is complete, $\sup A$ exists. Since $\sup A$ is the least upper bound of A, we must have $\sup A \leq \sup B$.