Basic Mathematics ( A # #% ) MA1015A Midterm Exam I
National Central University, Apr. 01 2019
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Problem 1. (10%) An integer z has property P provided that
“for all integers a, b, whenever x divides ab, x divide a or x divides b”.
Explain what it means to say that x does not have property P.

Solution. By assumption, x has property P if (and only if)

(V(a,b) € Z x Z)(z|(ab) = (z|a) v (z[b)) .
Therefore,
~ (x has property P

= )
< ~[(V(a,b) € Z x Z)(x|(ab) = (x]a) v (x]b))]

) (2|
(I(a,b) e Z x Z) [a:\(ab)A ((:C\a) v (a;|b))}
(3( [(ab) Az tanzib)];

x does not have property P

a,b) € Z x L) [z

thus x does not have property P means that there are two integers a, b such that x divides ab but x
does not divide both a and b. O

Problem 2. (20%) We define a prime to be average provided it is the average of two different prime

3. . . -
numbers (for example, 7 = is average). Consider the following propositions:

P: Every prime greater than 3 is average.

Q: Every even number other than 2 can be written as x + y, where z,y are primes, and possibly
x =1y (for example, 4 =2+2,6=3+3,8=5+3).

R: Every even number greater than 6 can be written as the sum of two different prime numbers.

Prove that R < P A Q).

Proof. First we write P,Q,R as logic statements:

P = (Vp > 3,p prime)(3q,r primes)(q #r A2p=q+7),
Q= (YneN\{1})(3¢,r primes)(2n =q+7r),
R=(VneN\{1,2,3})(3q,r primes)(¢ #r A2n=q+7r).

“=7 Agsume that R holds.



(R = Q): It suffices to show that if n = 2, 3, there exist prime numbers g, r such that 2n = g+r.
Nevertheless, 2-2=2+2and 2-3=3+3,s0 R = Q.

(R = R): Let p > 3 be a prime number. In particular, p € N\{1,2,3}. Then R implies that
there exists prime numbers ¢ and r such that ¢ # r and 2p = q + r. Therefore, R = P.

“<" Assume that P and Q hold. Let n € N\{1, 2,3} be given. By Q, there exist prime numbers ¢
and r such that 2n = ¢+ r.

(a) if ¢ # r, then ¢ # r and 2n = g+ r.
(b) if ¢ = r, then n = ¢ is a prime number. since n > 3, by P there exist prime numbers ¢;

and 7y such that ¢; # r; and 2n = 29 = ¢ + 1.

In either cases, there exist prime numbers ¢ and r such that ¢ # r and 2n = g + r. Therefore,
R holds. O

Problem 3. (15%) Show (by contradiction) that there do not exist prime numbers a, b, ¢ such that

a® + b = 3.

Proof. Suppose that there exist prime numbers a, b, ¢ such that a® + b> = . We note that ¢ cannot
be 2 since if a,b are also prime numbers, then a3 + b* > 23. Since 2 is only one even prime number
and ¢ # 2, we find that a® + b3 must be an odd number. Therefore, one and only one of a,b is 2.
W.L.O.G. we assume that b = 2. Then a® + 8 = ¢ or equivalently, a® = (¢ — 2)(c* + 2c + 4).

Note that ¢ + 2c+ 4 > ¢ — 2 since

02+20+4—(c—2)202+c—|—6:(c+%)2+%>0.

Since a is a prime number, there are two factorizations of a®: 1-a® or a-a?. Therefore, either c—2 =1

or ¢ — 2 = a since a®> > 1 and a® > a.
1. ¢—2=1: Then ¢ = 3 and a® = ¢ + 2c¢ + 4 = 19 which is impossible.
2. c—2=a: Then c=a+ 2 and
> =c+2c+4=(a+2)°+2(a+2)+4=a’+6a+12;

thus a® — a? — 6a — 12 = 0 which implies that a is a factor of 12. Therefore, a = 2 (which is
excluded by assumption) or a = 3 which is impossible since 3% — 32 — 6 -3 — 12 # 0.

Therefore, there are no prime numbers a, b, ¢ satisfying a® + b = ¢3. o

Problem 4. (10%) For non-zero integers a and b, an integer n is called a common multiple of a and
b if a divides n and b divides n. We say that the positive integer m is the least common multiple of

a and b, written as lem(a, b), if

(i) m is a common multiple of a and b, and



(ii) if n is a positive common multiple of a and b, then m < n.
Show that lem(a,b) - ged(a, b) = ab if a, b are natural numbers.

Proof. Let a,be Nandd = gcd(a,b). Then a = dm and b = dn for some m,n € N and ged(m,n) = 1.

Note that ab__ _ dmn; thus ab is a common multiple of a and b which implies that
ged(a, b) ged(a, b)
ab
—— > lem(a, b) . *
aed(a D) m(a, ) (x)
b
Next we prove that any common multiple of a and b is not less than m. Suppose that c is
a’

a positive common multiple of @ and b. Then ¢ = ka = kdm for some k € N. Since b also divides c,
we find that (dn) | (kdm) which implies that n | km. By the fact that ged(m,n) = 1, we must have

n | k. Therefore, k = nf for some ¢ € N. In other words, if ¢ is a positve common multiple of a and
b, then ¢ = kdm = ¢(dmn). Therefore, any common multiple of a and b is not less than ngC(Lbb). In
a7
particular,
ab
ged(a,b)
ab

Combining (*) and (**), we conclude that lem(a,b) = scd(a,b)’ :

Problem 5. (10%) Which of the following statements is true?
1. (VzeR)FyeR)(z < y?). 2. GyeR)(Vz e R)(z < ¢?).

lem(a,b) = (**)

Explain your answer.

Solution. 1. Let z € R be given. Choose y = |z| + 1. Then by the fact that 2|z| > z, we find that
' = (lz| + 1) =2 + 2)z|+ 1> =,
Therefore, it holds that (Vz € R)(Jy € R)(z < y?).

2. Let y € R be given. Then z = y* > y* which implies that (Vy € R)(3z € R)(z = y?) is true.

=Y
Therefore, ~ (Vy € R)(Fz € R)(x = y?) is false or equivalently, (3y € R)(Vz € R)(z < 4?) is

false. o

Problem 6. (15%) Let A and B be sets. Define an operation of sets A by AAB = (A—B)u(B—A).
Show that AAB = (A u B) — (A n B). You need to prove the statement logically, as well as using

Venn’s diagram.

Proof. Let x be an element in the universe. Then by the associative property of set operations,
e(AuB)—(AnB)exze(AuB)n(An B)"
sze(AuB)n (AU BY)
sze[An(A"UBY] U [Bn (A U BY)]
[(AnAY) U (AnBY] U [(BnAY) U (Bn BY]
sze[FU(AnBY] u[(BnAY) v g
(
(A

< T €

<€ AmBC) (B A%
B)u(B—A) < xze AAB. o

< I €



Problem 7. (10%) Let X be the universe, and .% be the empty family of subsets of X. Show that
UA:@.
AesF

Proof. Let v € X. Then z € |J Aif and only if (34 € .#)(x € A). Since .¥ is the empty family of
AeF

subsets of X, there is no element in .%; thus (3 A € .%)(x € A) is false. Therefore, z € |J A is false.
AeF
Since this is false for all given « € X, any element x € X is not an element of the set | J A. This
AeTF
implies that | J A= . o

AeF
Problem 8. (10%) Suppose that # = {A;|i € N} is an indexed family of sets such that for all

o0
i,jeN,if i <j, then A; € A;. Prove that for all £e N, [ J A, = Ay.
k=¢

0
Proof. “<”: Let x € |J Ag. Then there exists k > ¢ such that z € A;. Since A; < A, if i < j, we
k=t

0]
find that A, < Ay; thus x € Ay. Therefore, | J Ay < Ay
k=t

o0 o0
“2” Let w € Ap. Then x € |J Ay; thus A, < | Ax.
k=t k=t

o0
Therefore, Ay = |J Ax. o
k=t



