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Problem 1. (10%) Show that for each even natural number n,
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Therefore, n+ 1 P S.

By PMI, we conclude that S = N. ˝

Problem 2. (10%) Let a1 = a2 = 1, and for each natural number n ě 2, let
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.

Show that for each natural number n, 1 ď an ď 2.
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1. Then by assumption, 1 P S.

2. Suppose that t1, 2, ¨ ¨ ¨ , n ´ 1u Ď S. Then 1 ď an´1, an ď 2; thus
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Therefore, 1 ď an+1 ď 2. Combining with 1 ď an ď 2, we find that n P S.



By PCI, we conclude that S = N. ˝

Problem 3. (10%) Let A be a set, and R be a relation on A. Show that R is transitive if and only
if R ˝ R Ď R.

Proof. “ñ” Assume that R is transitive and (a, c) P R ˝ R be given. By the definition of the
composition of relations, there exists b in A such that (a, b) P R and (b, c) P R. Since R is
transitive, (a, c) P R which shows that R ˝ R Ď R.

“ð” Assume that R ˝R Ď R and (a, b), (b, c) P R. By the definition of the composition of relations,
(a, b) P R ˝ R; thus by the assumption that R ˝ R Ď R, we conclude that (a, b) P R. Therefore,
R is transitive. ˝

Problem 4. (10%) Let X be a non-empty set and A be a non-empty proper subset of X. Set
R = X ˆ X ´ (A ˆ A). Is R reflexive on X? Symmetric? Transitive? Prove your answers.

Proof. 1. R is not reflexive on X since if a P A, then a P X but the fact that (a, a) P A ˆ A

implies that (a, a) R R = X ˆ X ´ A ˆ A.

2. R is symmetric on X: Let (b, c) P X ˆ X. Then

(b, c) P R ô (b, c) R A ˆ A ô (b R A) _ (c R A) ô (c R A) _ (b R A) ô (c, b) R A ˆ A

ô (c, b) P R .

3. R is not transitive on X: Let a, b P X but a P A and b R A. Then (by the argument above)
(a, b) P R and (b, a) P R. If R is transitive on X, we must have (a, a) P R, a contradiction. ˝

Problem 5. (10%) Let p be a prime number, and a P N. Show that a2 = 1 (mod p) if and only if
a = 1 (mod p) or a = ´1 (mod p).

Proof. “ñ” Suppose that a2 = 1 (mod p). Then p | (a2 ´ 1). Since a2 ´ 1 = (a ´ 1)(a+ 1) and p is
a prime number, p | (a ´ 1) or p | (a+ 1). Therefore, a = 1 (mod p) or a = ´1 (mod p).

“ð” If a = 1 (mod p), then a = kp + 1 for some k P Z; thus a2 ´ 1 = k2p2 + 2kp which implies
that p | a2 ´ 1. Therefore, a = 1 (mod p) implies that a2 = 1 (mod p). On the other hand, if
a = ´1 (mod p), then a = kp ´ 1 for some k P Z; thus a2 ´ 1 = k2p2 ´ 2kp which implies that
p | a2 ´ 1. Therefore, a = ´1 (mod p) implies that a2 = 1 (mod p); thus a = 1 (mod p) or
a = ´1 (mod p) implies that a2 = 1 (mod p). ˝

Problem 6. Prove the Fermat’s Little Theorem

Let p be a prime, and let a P N such that p - a. Then ap´1 = 1 (mod p)

by the following steps.

(i) (5%) Show that none of the p ´ 1 integers a, 2a, 3a, ¨ ¨ ¨ , (p ´ 1)a is divisible by p.



(ii) (5%) Show that no two of the integers a, 2a, 3a, ¨ ¨ ¨ , (p ´ 1)a are congruent modulu p.

(iii) (5%) Show that
p´1
ś

j=1

(ja) = (p ´ 1)! (mod p).

(iv) (5%) Conclude from (iii) that ap´1 = 1 (mod p).

Proof. (i) Assume the contrary that there exists an integer 1 ď j ď p ´ 1 such that p | ja. Then
p | j or p | a. By assumption, p - a; thus p | j which implies that p divides an integer between
1 and p ´ 1, a contradiction. Therefore, none of the p ´ 1 integers a, 2a, 3a, ¨ ¨ ¨ , (p ´ 1)a is
divisible by p.

(ii) Assume the contrary that there exist 1 ď j, k ď p ´ 1 such that ja = ka (mod p). Then
p | (j ´ k)a which implies that p | j ´ k or p | a. By assumption, p - a; thus p | j ´ k, a
contradiction. Therefore, no two of the integers a, 2a, 3a, ¨ ¨ ¨ , (p ´ 1)a are congruent modulu
p.

(iii) Let 0 ď rj ă p be the remainder satisfying ja = rj (mod p). By (i), rj ‰ 0 for all 1 ď j ď p´1.
By (ii), rj ‰ rk if j ‰ k and 1 ď j, k ď p ´ 1. Therefore, tr1, r2, ¨ ¨ ¨ , rp´1u is a permutation of
t1, 2, ¨ ¨ ¨ , nu which implies that

p´1
ź

j=1

rj = (p ´ 1)! . (‹)

Since ja = rj (mod p), we conclude that

p´1
ź

j=1

(ja) =
p´1
ź

j=1

rj (mod p) ,

and the conclusion in (iii) follows from (‹).

(iv) Note that
p´1
ś

j=1

(ja) =
( p´1
ś

j=1

j
)
ap´1 = (p ´ 1)!ap´1; thus (iii) implies that

(p ´ 1)!ap´1 = (p ´ 1)! (mod p) .

Since p - (p ´ 1)!, by the cancellation law for Zp, we conclude that ap´1 = 1 (mod p). ˝

Problem 7. Let f : X Ñ Y be a function, and E Ď Y . Show that

1. (10%) E = f(f´1(E)) if and only if E Ď Rng(f).

2. (10%) f(f´1(E)) = E X Rng(f).

Proof. 1. Since we have shown that f(f´1(E)) Ď E for all E Ď Y in class, it suffices to show that
E Ď f(f´1(E)) if and only if E Ď Rng(f).

“ñ” Assume that E Ď f(f´1(E)) and y P E. Then there exists x P f´1(E) such that y = f(x).
Therefore, y P Rng(f) which shows E Ď Rng(f).



“ð” Assume that E Ď Rng(f) and y P E. Then there exists x P Dom(f) such that y = f(x).
Since y P E, x P f´1(E); thus y P f(f´1(E)). Therefore, E Ď f(f´1(E)).

2. Let A = E X Rng(f). Then A Ď Rng(f); thus we conclude from 1 that

A = f(f´1(A)) .

Moreover, A Ď E; thus f´1(A) Ď f´1(E) which implies that f(f´1)(A)) Ď f(f´1(E)). There-
fore, E X Rng(f) Ď f(f´1(E)).

On the other hand, suppose that y P f(f´1(E)). Then y P Rng(f) and there exists
x P f´1(E) such that y = f(x). Since x P f´1(E) if and only if f(x) P E, we find that y P E.
Therefore, y P E X Rng(f) which shows that f(f´1(E)) Ď E X Rng(f). ˝

Problem 8. (10%) Let f : X Ñ Y be a function. Prove that f is a one-to-one function if and only
if

f(A) X f(B) = f(A X B) @A,B Ď X

Proof. Since have shown that f(AXB) Ď f(A)Xf(B) in class, it suffices to show that f is one-to-one
if and only if f(A) X f(B) Ď f(A X B) for all A,B Ď X.

“ñ” Suppose that f is one-to-one and A,B Ď X. Let y P f(A) X f(B). Then there exists x1 P A

and x2 P B such that y = f(x1) = f(x2). Since f is one-to-one, we must have x1 = x2; thus
x1 P A X B which implies that y P f(A X B). Therefore, f(A) X f(B) Ď f(A X B).

“ð” Suppose that f(A)X f(B) Ď f(AXB) for all A,B Ď X, and f(x1) = f(x2). Let A = tx1u and
B = tx2u. Then f(A) = f(B) = f(A) X f(B) which implies that f(A X B) ‰ H. Therefore,
A X B ‰ H; thus x1 = x2. Therefore, f is one-to-one. ˝


