A Concise Lecture Note on Basic Mathematics - based on
“A Transition to Advanced Mathematics 8th Edition”

1 Logic and Proofs

1.1 Proposition and Connectives

Definition 1.1. A proposition is a sentence that has exactly one truth value. It is either true,

which we denote by T, or false, which we denote by F.
Example 1.2. 72 > 60 (F), = > 3 (T)
Example 1.3. Earth is the closest planet to the sun. (F)

Example 1.4. The statement “the north Pacific right whale ( & # #7 ) will be extinct species before

the year 2525”7 has one truth value but it takes time to determine the truth value.

Example 1.5. That “Euclid was left-handed” is a statement that has one truth value but may never

be known.

Definition 1.6. A negation of a proposition P, denoted by ~ P, is the proposition “not P”. The
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Example 1.8. Now we analyze the sentence “either 7 is prime and 9 is even, or else 11 is not less
than 3”. Let P denote the sentence “7 is a prime”, Q denote the sentence “9 is even”, and R denote
the sentence “11 is less than 3”. Then the original sentence can be symbolized by (P A Q) v (~R),

and the table of truth value for this sentence is

Pl Q| R |PAQ|~R|(PAQ) Vv (~R)
T | T | T T F T
T | T F T T T
T | F T F F F
F | T | T F F F
T | F F F T T
F | T F F T T
F F T F F F
F F F F T T

Since P is true and Q, R are false, the sentence (P A Q) v (~R) is true.

. tautology ] o _ true ,
Definition 1.9. A T is a propositional form that is for every assignment of
contradiction alse

truth values to its component.



Example 1.10. The logic symbol (P v Q) v (~PA ~Q) is a tautology.
Example 1.11. The logic symbol ~ (Pv ~P) v (QA ~Q) is a contradiction.

Definition 1.12. Two propositional forms are said to be equivalent if they have the same truth

value.
Theorem 1.13. For propositions P, Q, R, we have the following:

(a) P <~ (~P). (Double Negation Law)
} (Commutative Laws)
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De Morgan’s Laws
) ~(Pv Q) (~P) A(~Q) } ( ° )

Proof. We prove (g) for example, and the other cases can be shown in a similar fashion. Using the
truth table,

Pl Q| R| QAR | Pv(QAR) | PvQ | PVR | (PVvQ)A(PVR)
T, T | T T T T T T
T | T | F F T T T T
T|F | T F T T T T
F|T,|T T T T T T
T|F | F F T T T T
F|T|F F F T F F
F|F | T F F F T F
F|F|F F F F F F
we find that “P v (Q A R)” is equivalent to that “(P v Q) A (P v R)”". o

Definition 1.14. A denial of a proposition is any proposition equivalent to ~P.
¢ Rules for ~, A and v:

1. ~ is always applied to the smallest proposition following it.

2. A connects the smallest propositions surrounding it.

3. v connects the smallest propositions surrounding it.

Example 1.15. Under the convention above, we have



1. ~Pv~Q< (~P) v (~Q).
2 PvQvR<e (PvQ vR<Pv(QvR).
3. PA~Qv~R< [P A (~Q)] v (~R).

4. RAPASAQ< [(RAP)AS] AQ.

1.2 Conditionals and Biconditionals

Definition 1.16. For propositions P and Q, the conditional sentence P = Q) is the proposition
“if P, then Q”. Proposition P is called the antecedent and Q) is the consequence. The sentence

P = Q is true if and only if P is false or Q is true.

Example 1.17. We would like to determine the truth value of the sentence “if x > 8, then z > 5.

Let P denote the sentence “x > 8” and Q) the sentence “x > 57,
1. If P, Q are both true statements, then x > 8 which is (exactly the same as P thus) true.
2. If P is false while Q is true, then 5 < x < 8 which is (exactly the same as ~P A Q thus) true.
3. If P, Q are both false statements, then x < 5 which is (exactly the same as ~Q thus) true.
4. It is not possible to have P true but Q) false.

Remark 1.18. In a conditional sentence, P and Q might not have connections. The truth value of

the sentence “P = Q" only depends on the truth value of P and Q.
e How to read P = ( in English?

1. If P, then Q. 2. P is sufficient for Q. 3. P only if Q.

4. Q whenever P. 5. Q is necessary for P. 6. Q, if P (or when P).
Definition 1.19. Let P and Q be propositions.

1. The converse of P = Q is Q = P.

2. The contrapositive of P = () is ~Q = ~P.

Example 1.20. We would like to determine the truth value, as well as the converse and the contra-

positive, of the sentence “if 7 is an integer, then 14 is even”.
1. Since that 7 is an integer is false, the implication “if 7 is an integer, then 14 is even” is true.
2. The converse of the sentence is “if 14 is even, then 7 is an integer” which is a false statement.

3. The contrapositive of the sentence is “if 14 is not even, then 7 is not an integer” which is a

true statement since the antecedent “14 is not even” is false.



By this example, we know that a sentence and its converse cannot be equivalent.

Theorem 1.21. For propositions P and Q, the sentence P = Q is equivalent to its contrapositive

~Q=~P.

Proof. Using the truth table

Pl Q[P=Q] ~Q | ~P [~Q=~P
T[T T F F T
T | F F T F F
F| T T F T T
F|F T T T T

we conclude that the truth value of P = Q and ~ Q =~ P are the same; thus they are equivalent

sentences. o

Definition 1.22. For propositions P and Q, the bi-conditional sentence P < Q) is the proposition
“P if and only if Q”. The sentence P < Q is true exactly when P and Q have the same truth values.

In other words, P < Q is true if and only if P is equivalent to Q.

Remark 1.23. The notation < is a combination of = and its converse <, so the notation seems

to suggest that (P < Q) is equivalent to (P = Q) A (Q = P). This is in fact true since

P|Q|PeQ|P=Q|Q=P|(P=Q) A (P=Q)
T T T T T T
T F F F T F
F T F T F F
F F T T T T

Example 1.24. The proposition “23 = 8 if and only if 49 is a perfect square” is true because both
.y 22 . . . . .
components are true. The proposition “m = - if and only if /2 is a rational number” is also true

(since both components are false). The proposition “6 + 1 = 7 if and only if Argentina is north of

the equator” is false because the truth values of the components differ.

Remark 1.25. Definitions may be stated with the “if and only if” wording, but it is also common
practice to state a formal definition using the word “if”. For example, we could say that “a function

f is continuous at a number c if - - -7 leaving the “only if” part understood.

Example 1.26. A teacher says “If you score 74% or higher on the next test, you will pass the exam”.

Even though this is a conditional sentence, everyone will interpret the meaning as a biconditional

(since the teacher tries to “define” how you can pass the exam).
Theorem 1.27. For propositions P, Q and R, we have the following:
(&) (P=Q) < (~PvQ).
b) P=Q) « (P=Q) A (Q=P).
€ ~P=Q) < (Pr~Q).



(d) ~(PArQ) < (P=~Q).
() ~(PrQ) < (Q=~P).
) P=(Q=R) = (PAQ) =R
(8) P=(QAR) = (P=>Q)A(P=R).
() (PvQ) =R <= (P=R)A(Q=R).
e How to read P < Q in English?
1. P if and only if Q. 2. P if, but only if, Q.
3. P implies Q, and conversely. 4. P is equivalent to Q.
5. P is necessary and sufficient for Q.
e Rules for ~, A, v, = and <: These connectives are always applied in the order listed.
Example 1.28.
1. P=~Q v R < Sis an abbreviation for (P = [(~Q) v R]) < S.
2. Pv ~Q < R = S is an abbreviation for [P v (~Q)] < (R = 9).

3. P = Q = R is an abbreviation for (P = Q) = R.

1.3 Quantified Statements

Definition 1.29. An open sentence is a sentence that contains variables. When P is an open sen-
tence with a variable x (or variables xy, - - - , x,,), the sentence is symbolized by P(z) (or P(z1, -+ ,z,)).
The truth set of an open sentence is the collection of variables (from a certain universe) that

may be substituted to make the open sentence a true proposition.
Remark 1.30.

1. In general, an open sentence is not a proposition. It can be true or false depending on the

value of variables.

2. The truth set of an open sentence P(z) depends on the universe where = belongs to. For
example, suppose that P(z) is the open sentence 2 + 1 = 0. If the universe is R, then P(z)
is false for all z (in the universe). On the other hand, if the universe is C, the complex plane,
then P(z) is true when = = +i (which also implies that the truth set for P(z) is {i, —i}).

Example 1.31. Let P(z) be the open sentence “z is a prime number between 5060 and 5090”. In
this open sentence, the universe is usually chosen to be N, the natural number system, and the truth
set for P(x) is {5077,5081, 5087}.



Definition 1.32. With a universe X specified, two open sentences P(z) and Q(z) are equivalent if

they have the same truth set for all z € X.

Example 1.33. The two sentences “3x + 2 = 20” and “2x — 7 = 5” are equivalent open sentences

in any of the number system, such as N, Z, Q, R and C.

Example 1.34. The two sentences “x? —1 > 0” and “(z < —1) v (x > 1)” are equivalent open

sentences in R.

Given an open sentence P(z), the first question that we should ask ourself is “whether the truth

set of P(z) is empty or not”.

Definition 1.35. The symbol 7 is called the existential quantifier. For an open sentence P(x),
the sentence (3z)P(z) is read “there exists x such that P(z)” or “for some x, P(x)”. The sentence
(3z)P(x) is true if the truth set of P(x) is non-empty.

Remark 1.36. An open sentence P(z) does not have a truth value, but the quantified sentence
(3x)P(z) does.
Example 1.37. The quantified sentence (3x)(z” — 1223 4+ 162 — 3 = 0) is true in the universe of

real numbers.

Example 1.38. The quantified sentence (3n)(2%" + 1 is a prime number) is true in the universe of

natural numbers.
Example 1.39. The quantified sentence
(3z,y,z,n)(z" +y" =2" An=3)
is true in the universe of integers, but is false in the universe of natural numbers.

Definition 1.40. The symbol V is called the universal quantifier. For an open sentence P(x),
the sentence (Vz)P(x) is read “for all z, P(z)”, "for every z, P(x)” or “for every given z (in the

universe), P(z)”. The sentence (Vx)P(z) is true if the truth set of P(x) is the entire universe.
Example 1.41. The quantified sentence (Vn)(2*" + 1 is a prime number) is false in the universe of
natural numbers since

22° 1 1 = 641 x 6700417 .

Remark 1.42. In general, statements of the form “every element of the set A has the property
P” and “some element of the set A has property P” may be symbolized as (Vx € A)P(x) and

(Jx € A)P(x), respective. Moreover,

1. “All P(z) are Q(z)” (¥4 % %P ého 8 L Q or X &4 & P o % £ Q) should be
symbolized as “(Vz)(P(z) = Q(x))”.

To see why the sentence should be symbolized like that, we use A and B to denote the truth
set of P(z) and the truth set of Q(z), respectively. Then “All P(x) are Q(z)” implies that
A < B; that is, if z in A, then = in B. Therefore, by reading the truth table
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we find that the truth set of the open sentence P(z) = Q(x) is the whole universe since the

second case (z € A) A (z € B) cannot happen.

2. “Some P(z) are Q(z

) (FEBRE P B Qor 72 o ks Y P4 Q) should be
symbolized as “(3z) (P(

;
) A Q(x))".
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Example 1.43.
1. The sentence “for every odd prime z less than 10, 22 + 4 is prime” can be symbolized as
(Vz)[(z is odd) A (2 is prime) A (z < 10) = (2* + 4 is prime)] .
2. The sentence “for every rational number there is a larger integer” can be symbolized as

(VeeQ)[3FzeZ)(z > x)].

3. The sentence “some functions defined at 0 are not continuous at 0” can be symbolized as

(3 F)[(f is defined at 0) A (f is not continuous at 0)] .

4. The sentence “some integers are even and some integers are odd” can be symbolized as

(Fz)(z is even) A (Jy)(y is odd).

5. The sentence “some real numbers have a multiplicative inverse (3% ¥ =% )” can be symbol-

ized as
Az eR)[Fy e R)(zy =1)].

To symbolized the sentence “any real numbers have an additive inverse (4viZ & =~ %)”, it is

required that we combine the use of the universal quantifier and the existential quantifier:
(VzeR)[FyeR)(z+y=0)].

This is in fact quite common in mathematical statement. Another example is the sentence “some

real number does not have a multiplicative inverse” which can be symbolized by

(JzeR) ~[Fy e R)(zy =1)]

or simply

FzeR)[(VyeR)(zy # 1)].



Example 1.44 (Continuity of functions). By the definition of continuity and using the logic symbol,
f is continuous at a number c if
(Ve) 30) (Va) [(Jo — cf <) = (If (x) = f ()] < €)] -
Q)
P(e)=(35)Q(e.0)

[

1. The universe for the variables ¢ and ¢ is the collection of positive real numbers. Therefore,

sometimes we write

(Ve >0)3d>0)(V) [(|:U —c<d)=(f(z)— flc)] < 5)} )

2. The sentence P(e) = (36)Q(e,0) is always true for any € > 0.

3. Suppose ¢ is a given positive number. Then the truth set for Q(e, §) is non-empty which implies

that “there is at least one positive number § making the sentence Q(e,d) true”.

Definition 1.45. Two quantified statement are equivalent in a given universe if they have the same
truth value in that universe. Two quantified sentences are equivalent if they are equivalent in every

universe.
Theorem 1.46. If P(z) is an open sentence with variable x, then
(a) ~(Va)P(x) is equivalent to (3x) ~P(x).
(b) ~(3z)P(x) is equivalent to (¥ x) ~P(z).
Proof. Let X be the universe, and A be the truth set of the open sentence P(x).

1. The sentence (Vz)P(z) is true if and only if A = X; thus ~ (Vz)P(z) is true if and only if
A # X. On the other hand, the sentence () ~ P(x) is true if and only if the truth set of
~P(x) is non-empty; thus (32) ~P(z) is true if and only if A # X.

2. Using (a) and the double negation law, (3z)P(z) is equivalent to ~ ((V ) ~P(z)); thus
~3z)P(z) & ~[~((Vz) ~P(z))] = (Vz)~P(z). o
Corollary 1.47.

1. If P(x,y, z) and Q(x,y, z) are open sentences with variables x, y and z, then the quantified sen-
tence ~ [(V2)(3y)(V2)(P(z,y,2) = Q(z,y,2))] is equivalent to (3z)(Vy)(3z)(P(z,y,2)A ~
Q(z,y,2))-

2. If P(xy,x9, w3, 24) and Q(z1,xe,x3,74) are open sentences with variables x1, T2, x3 and x4,
then the quantified sentence ~ [(3 x1) (Y xe)(Fa3)(V ;1;4)(P(:1;1, To, x3,x4) = Q(x1, 9, X3, 14))} is
equivalent to (¥ x1)(3x2)(V 23) (3 2a) (P(21, T2, T3, 24) A ~Q(21, T2, T3, 74)) .



Example 1.48 (Discontinuity of functions). A function f is continuous at ¢ if and only if
(Ve>0)(36 > 0)(Va)[(lz —c| <) = (|f (=) — f(c)] <¢)].
Therefore, f is not continuous at ¢ if and only if
Fe>0)(Vé>0)32)[(lz — ] <) A (|f () = f(0)] = 2)].

3 f bR R G- BPrEeRTFEXLLIEINTERDERR (c—0,c+0) % F z §
BE|f(x)—f(o)) =€

Example 1.49 (Non-existence of limits). A function f defined on an interval containing ¢, except

possibly at ¢, is said to have a limit at ¢ (or glﬁgrri f(x) exists) if and only if
(FLeR)(Ve>0)F0>0)(Va)((0<|z—c| <d)=(|f(z)— L] <¢)).

Therefore, f does not have a limit at ¢ if and only if
(VLeR)3e>0)(Vé>0)3z)((0<|z—c| <8 A(|f(z)—L|=2)).

f
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Definition 1.50. The symbol 3! is called the unique existential quantifier. For an open sentence
P(z), then sentence (3!z)P(z) is read “there is a unique x such that P(x)”. The sentence (3!x)P(x)

is true if the truth set of P(x) has exactly one element.

Theorem 1.51. If P(z) is an open sentence with variable x, then
(a) (32)P(z) = (Fz)P(x).
(b) (l2)P(z) = [(F2)P(2)) A ((Vy)(V2)(P(y) A P(2) = y = 2))].

1.4 Basic Proof Methods I (Direct Proof)

Mathematical Theorem: A statement that describes a pattern or relationship among quantities
or structures, usually of the form P = Q.

Proofs of a Theorem: Justifications of the truth of the theorem that follows the principle of logic.
Lemma: A result that serves as a preliminary step to prove the main theorem.

Axiom (=% ): Some facts that are used to develop certain theory and cannot be proved.

Undefined terms: Not everything can/have to be defined, and we have to treat them as known.

Remark 1.52. 1. To validate a conditional sentence P = Q), by definition you only need to shown
that there is no chance that P is true but at the same time Q is false. Therefore, you often
show that if P is true then Q is true, if Q is false then P is false or that P is true and Q is false

leads to a contradiction (always false).



2. Sometimes it is difficult to identify the antecedent of a mathematical theorem. Usually it is
because the antecedent is too trivial to be stated. For example, “4/2 is an irrational number”
is a mathematical theorem and it can be understood as “if you know what an irrational

number is, then /2 is an irrational number”.

e General format of proving P = ) directly:

Direct proof of P = Q
Proof.

Assume P. (7 % %7 2 VB s 0 & {'p‘ P e %)

Therefore, Q.
Thus, P= Q a

Basic Rules: In any proof at any time you may

1. state an axiom (by the axiom of ------ ), an assumption (assume that ------ ), or a previously
proved result (by the fact that ---- - ).

2. state a sentence whose symbolic translation is a tautology.

3. state a sentence (or use a definition) equivalent to any statement earlier in the proof.

4. use the modus ponens rule: after statements P and P = Q appear in a proof, state Q.
Example 1.53. Prove that if z is odd, then x + 1 is even.

Proof. Assume that z is an odd number.
Then = = 2k + 1 for some integer k; thus z +1 =2k + 1+ 1 = 2(k + 1) which shows that z + 1 is a
multiple of 2.

Therefore, x 4+ 1 is even. O
Example 1.54. Let a,b, ¢ be integers. If a divides b and b divides ¢, then a divides c.

Proof. Let a, b, c be integers.

Assume that a divides b and b divides c.

Then b = am for some integer m, and ¢ = bn for some integer n; thus ¢ = (am)n = a(mn) which
shows that ¢ is an multiple of a.

Therefore, a divides c. =

Alternative way of proving. Let a,b, c be integers.

Assume that a divides b. Then b = am for some integer m.
Assume that b divides ¢. Then ¢ = bn for some integer n.

Thus, ¢ = (am)n = a(mn) which shows that ¢ is an multiple of a.

Therefore, a divides c. O



Example 1.55. Show that (Vz € R)(z* + 1 > 0).
%L P = Q n# 4] . Show that if z € R, then 22 + 1 > 0.

Proof. Assume that x is a real number.

Then either x > 0, x =0 or z < 0.
1. If2 >0, then 22 =2 -2 > 0.
2. If x =0, then 22 = 0.
3. If z <0, then (—z) > 0; thus 2* = (—z) - (—z) > 0.

In either cases, 22 = 0; thus 22 + 1 > 0.

Therefore, 22 + 1 > 0. =

Example 1.56. Show that (Ve > 0) (#{n € N‘ % > 5} < oo).

¥ P = Q 23] ¢ Show that if ¢ > 0, then the collection {n € N‘l > 5} has only
n

finitely many elements.

Proof. Assume that € > 0. Then é < o0.

Note that {n eN ’ % > 5} is identical to the set {n eN ‘ n < %}, while the later is the collection of

natural numbers that are less than -

Therefore, #{n eN ‘ 1 > e} < ! < 0. O
n 3

Example 1.57. Show that (Vz e R)(3y e R)(z +y = 0).
W& P = Q 73] ! Show that “if v € R, then the truth set of the open sentence
P(y) = (x +y = 0) is non-empty” or “if r € R, then there exists y € R such that = +y = 0".

Proof. Assume that x is a real number.

Then y = —x is a real number and = 4+ y = 0.
Thus, there exists y € R such that « +y = 0.
Therefore, for each x € R, there exists y € R such that z + y = 0. D

Remark 1.58. The sentence “Assume that x is a real number” in the proof above is often replaced

by “Let x be a real number” or “Let x € R be given”.

1.5 Basic Proof Methods II (Indirect Proof)

Recall that a conditional sentence is equivalent to its contrapositive; that is,
(P=Q) < (~Q=~P).

Therefore, to prove the conditional sentence P = Q, one can instead prove that ~Q =~ P. This

way of proving P = @ is called “proved by contraposition”.



e General format of proving P = () by contraposition:

Proof of P = Q by Contraposition
Proof.
Assume ~Q. (¥ 7 {27 2 GNP 0 B E 5 ~Q )

Therefore, ~P.
Thus, ~Q =~P.
Therefore, P = Q. O

Example 1.59. Let m be an integer. Show that if m? is even, then m is even.

Proof. Assume (the contrary) that m is odd.

Then m = 2k + 1 for some integer k. Therefore, m? = (2k + 1)? = 4k* + 4k + 1 = 2(2k* + 2k) + 1
which is an odd number.

Thus, if m is odd, then m? is odd.

Therefore, if m? is even, then m is even. o

Example 1.60. Let x and y be real numbers such that < 2y. Show that if 7zy < 322 + 29?, then

3r < y.

Proof. Let x and y be real numbers such that = < 2y.

Assume the contrary that 3z > y.

Then 2y — x > 0 and 3z —y > 0. Therefore, (2y — z)(3z — y) > 0. Expanding the expression, we
find that 7zy — 322 — 2y? > 0. Therefore, 7oy > 322 + 22

Thus, if 3z > y, then Tzy > 322 + 2%

Therefore, if 7Try < 3% + 22, then 3z < . o

e General format of proving P = Q by contradiction:

Proof of P = ) by Contradiction
Proof.
Assume P and ~Q. (7 * {5 2 GUE i 0 4 R 5 P&~ e %)

Therefore, ~P.
Thus, PA ~P, a contradiction.
Therefore, P = Q. O

or simply

Proof of P = () by Contradiction
Proof.
Assume P and ~Q. (¥ * %5 2 58P0 G R 5 P~ Q o %)

Therefore, ~P, a contradiction.
Therefore, P = Q. D




As mentioned before, there are cases that the antecedent of a theorem is unclear. This kind of
theorems are of the form Q.

¢ General format of proving ) by contradiction:

Proof of Q by Contradiction

Proof.
Assume ~Q. (7 # {7 2 VB A R 5 ~Q o 7 )
' (L F Lhcid 230 & LK i 2)

Therefore, P.

: (d PA~Q {7 84848 %)
Therefore, ~P.
Thus, PA ~P, a contradiction.

Therefore, P = Q. D

Example 1.61. Show that /2 is an irrational number.

Proof. Assume (the contrary) that 1/2 is a rational number.

Then v/2 = 9 for some positive integers p, q satisfying (p,¢) = 1. Thus, ¢* is an even number since
p

¢* = 2p%. By Example , q is even; thus ¢ = 2k for some integer k. Then p? is an even number
2
since p? = % = 2k%. Example again implies that p is an even number.

Thus, (p,q) # 1, a contradiction.

Therefore, V/2 is an irrational number. o
Example 1.62. Show that the collection of primes is infinite.

Proof. Assume the contrary that there are only finitely many primes.

Suppose that p; < ps < --+ < pg are all the prime numbers. Let n = p1pa---pr + 1. Then n > p;
and n is not a prime. Therefore, n has a prime divisor (F F1#k) ¢; that is, ¢ is a prime and g|n.
Since ¢ is a prime, ¢ = p; for some 1 < j < k.

However, ¢ = p; does not divide n, a contradiction.

Therefore, the collection of primes is infinite. O

Example 1.63. There are n people (n = 2) at a party, some of whom are friends. Prove that there
exists someone at the party who is friends with the same number of party-goers as another person.
PR AP A BEEY TG ABA AT ET P k- S o

Proof. Assume the contrary that no two party-goers have the same number of friends. Note that
the number of friends should range from 0 to n — 1; thus by the assumption that no two party-goers
have the same number of friends, there must be one party-goer who has no friend, while there must
be one party-goer who has n — 1 friends. This is impossible because the one who has n — 1 friends

is a friend of the one who has no friend. o



Some mathematical theorems are of the form P < Q. As explained before, this means P = Q
and Q = P; thus one should establish these two implication separately.
e General format of proving P < Q:

Proof of P < Q
Proof.

(i) Show that P = Q using the methods mentioned above.
(ii) Show that Q = P using the methods mentioned above.
Therefore, P < Q. D

Example 1.64. Let m, n be integers. Show that m and n have the same parity (Fr % F %) if and

only if m? + n? is even.

Proof. (=) If m and n are both even, then m = 2k and n = 2¢ for some integers k and ¢. Therefore,
m?+n? = 2(2k?+ 20?) which is even. If m and n are both odd, then m = 2k +1 and n = 20+1

for some integers k and (. Therefore, m? + n? = 2(2k* + 20> + 2k + 2¢ + 1) which is even.
Therefore, if m and n have the same parity, m? + n? is even.

(<) Assume the contrary that there are m and n having opposite parity. W.L.O.G. we can assume
that m is even and n is odd. Then m = 2k and n = 2+ 1 for some integers k and ¢. Therefore,
m? +n? = 2(2k%* + 2% + 2() + 1 which is odd. Thus, if m and n have opposite parity, then

m? + n? is odd. Therefore, if m? + n? is even, then m and n have the same parity. O

Remark 1.65. 1. Sometimes it requires intermediate equivalent proposition to show P < Q; that

is, one might establish
(PeRi)ARIAR) A A(Ri1 =Ry AR, Q)
to prove P < Q.

2. Often times it is more efficient to show a theorem of the form “P;, Py, -- -, P,, are equivalent”
(which means Py, Py, - -+, P,, have the same truth value) by showing that P; = P,, Py = Pj,

-+, and P,, = Py. In other words, one uses the following relation
[(Pl <:>P2> A\ (Pg <:>P3) VANMILILIVAN (Pn—l <:>Pn)] = [(Pl = PQ) A\ (PQ = Ps) VANMILILVAN (Pn = Pl)}
to prove this kind of theorems.

Example 1.66. Let x,y be non-negative real numbers such that x — 4y < y — 3x. Prove that if
3z > 2y, then 1222 + 10y? < 24xy.

Direct proof. Let z,y be non-negative real numbers such that x — 4y < y — 3x. Suppose that
3z > 2y. Then 4o — 5y < 0 and 3z — 2y > 0. Therefore,

0> (4o — 5y)(3z — 2y) = 122 + 10y* — 23y

or equivalently, 1222 + 10y? < 23xy. Since z,y are non-negative real numbers, 23zy < 24xy; thus
1222 + 10y? < 24xy. D



Proof by contraposition. Let x,y be non-negative real numbers such that z—4y < y—3z. Assume

the contrary that 1222 + 10y? > 24xy. Since x,y are non-negative real numbers,
1222 + 10y? > 24xy > 23zy;

thus (4o — 5y)(3z — 2y) = 122 + 10y* — 232y > 0. Since x — 4y < y — 3z, we find that 4z — 5y < 0;
thus 3z — 2y < 0. O

Proof by contradiction. Let x,y be non-negative real numbers such that z —4y < y—3x. Assume
that 3z > 2y and 1222 + 10y? > 24xy. Then 42 — 5y < 0 and 3z — 2y > 0; thus

0> (4o — 5y)(3z — 2y) = 122 + 8y* — 232y > 242y — 23zy =y = 0,

where the last inequality follows from the fact that x,y are non-negative real numbers. Thus, we

reach a contradiction 0 > 0. o

1.6 Proofs Involving Quantifiers

e General format of proving (Vx)P(z) directly:
Note that to establish (Vx)P(z) is the same as proving that “if x is in the universe, then P(z) is

true”.

Direct Proof of (Vx)P(z)
Proof.

Let = be given in the universe. (¥ * {% % = ;VP~{t » 4 & {@ FE AR

Hence P(z) is true.
Therefore, (Vz)P(x) is true. o

e General format of proving (Vz)P(z) by contradiction:
To prove “if x is in the universe, then P(z) is true” by contradiction is to show that “an z in the

universe so that P(x) is false leads to a contradiction”.

Proof of (Vz)P(z) by contradiction

Proof.

Assume (the contrary) that ~ (Vx)P(z).

Then (3x) ~P(z).

Let = be an element in the universe such that ~P(x).

Therefore, QA ~Q, a contradiction.
Thus (Fz) ~P(z) is false, so (Vz)P(x) is true. o




or simply

Proof of (Vz)P(z) by contradiction

Proof.

Assume (the contrary) that (3z) ~P(z).

Let = be an element in the universe such that ~P(z).

Therefore, QA ~Q, a contradiction.
Thus (3x) ~P(x) is false, so (Vz)P(x) is true. o

Example 1.67. Show that for all x € (O, g), sinx + cosx > 1.

Proof. Assume that there exists x € (O, g) such that sinx + cosz < 1. Then 0 < sinx + cosx < 1;
thus

0 < (sinz +cosx)* < 1.

Expanding the square and using the identity sin® z + cos? z = 1, we find that
0<1l42sinzcosx <1

which shows sinz cosx < 0. On the other hand, since = € (0, g), we have sinz > 0 and cosx > 0 so
that sinx cosx > 0, a contradiction.

Therefore, sinx + cosx > 1 for all x € (O, g) =

e General format of proving (3z)P(z) directly: Method 1.
The easiest way to show that (3x)P(zx) is to give a precise x in the universe and show that
P(z) is true; however, this usually requires that you make some effort to find out which z suits this

requirement.

Constructive Proof of (3z)P(z)

Proof.

Specify one particular element a.

If necessary, verify that a is in the universe.

Therefore, P(a) is true.
Thus (32)P(z) is true. 0

Example 1.68. Show that between two different rational numbers there is a rational number.
WEFIEEF S 0 TEP “Ifa,be Q and a < b, then there exists ¢ € Q such that a < ¢ < b”.

Proof. Let a, b be rational numbers and a < b. Let ¢ = a ;— b. Then ce Q and a < ¢ < b. =

Example 1.69. Show that there exists a natural number whose fourth power is the sum of other

three fourth power.

Proof. 20615693 is one such number because it is a natural number and

20615673* = 2682440* + 1536539* + 18796760" . o



e General format of proving (3z)P(z) directly: Method 2.
To show (Fz)P(x), often times it is almost impossible to provide a precise = so that P(z) is true.

Proving (32)P(z) directly (not proving by contradiction) then usually requires a lot of abstract steps.

Non-Constructive Proof of (3z)P(x)
Proof.

Therefore, P(a) is true.
Thus (32)P(z) is true. o

Example 1.70. Let f : [0,1] — [0, 1] be continuous. Show that (3z € [0,1])(z = f(z)).
Proof. 1. If f(0) =0, then (3z € [0,1])(z = f(x)).

2. If f(0) # 0 and f(1) # 1, then 0 < f(0), f(1) < 1. Define g : [0,1] — R by g(z) = =z — f(z).
Then ¢ is continuous on [0, 1]. Moreover, g(0) < 0 and g(1) > 0. Thus, the intermediate value

theorem implies that there exists x such that 0 < z < 1 and g(z) = 0 (which is the same as

z = [f(x)).

In either cases, there exists = € [0, 1] such that = = f(x). D

e General format of proving (3z)P(z) by contradiction:

Proof of (3z)P(x) by contradiction
Proof.

Suppose the contrary that ~ (3z)P(x).

If necessary, verify that a is in the universe.

Therefore, P(a) is true.
Thus (3x)P(z) is true. o

Example 1.71. Let S be a set of 6 positive integers, each less than or equal to 10. Prove that there

exists a pair of integers in S whose sum is 11.

Proof. Suppose the contrary that every pair of integers in S has a sum different from 11. Then S
contains at most one element from each of the sets {1,10}, {2,9}, {3,8}, {4,7} and {5,6}. Thus, S
contains at most 5 elements, a contradiction. We conclude that S contains a pair of numbers whose

sum in 11. o

e General format of proving (3!x)P(z):

Proof of (3!2)P(x)
Proof.
(i) Prove that (3x)P(z) is true using the methods mentioned above.
(ii) Prove that (Vy)(V2)[(P(y) A P(2)) = (y = 2)]:
Assume that y and z are elements in the universe such that P(y) and P(z) are true.

Therefore, y = z.
From (i) and (ii) we conclude that (3!z)P(z) is true. o




Example 1.72. Prove that every non-zero real number has a unique multiplicative inverse.
Proof. Let x be a non-zero real number.
1
1. Let y = - Since x # 0, y is a real number. Moreover, xy = 1; thus (3y € R)(zy = 1).

2. Suppose that y and z are real numbers such that xy = zz = 1. Then z(y — z) = 2y — xz = 0.

By the fact that  # 0, we must have y = z.
Therefore, (V. # 0)(3ly)(zy = 1). o

Some manipulations of quantifiers that permit valid deductions:

(4 2) (TP, ) < (V) (Y 2)P(z, ), (1.1a)
() @9)P@,y) = Gy)EPE.y), (1.1b)
(V2)P(z) v (V2)Q(z) = (V) [P(z) v Q(z)] , (1.1c)
(/) [P(@) = Q)] = [(V)P() = (V2)Q()] (1.14)
(V) [P(x) £ Q)] = [(V2)P(2) A (V2)Q)] (110
Ba)(Yy)P(r,y) = (V9)E2)P (). (111)

Counter-examples for the non-equivalence in (c), (@d) and (@f):

1. the “if” direction in (@0): Let the universe be all the integers, P(z) be the statement “z is an
even number” and Q(z) be the statement “z is an odd number”. Then clearly (V z)[P(z)vQ(z)]
but we do not have (Y x)P(z) v (Vz)Q(x).

2. the “if” direction in (@d): Let the universe be all the animals, P(z) be the statement “z has
wings” and Q(z) be the statement “z is a bird”. Then clearly the implication [(Vz)P(z) =
(V2)Q(z)] is true (since the antecedent is false) while the statement (Vz)[P(z) = Q(z)] is

false.

3. the “if” direction in (@f): Let the universe be all the non-negative real numbers, and P(z,y)
be the statement “y = 2?7, Clearly (Vy)(3z)P(z,y) but we do not have (3z)(Vy)P(z,y).

1.7 Strategies for Constructing Proofs

Summary of strategies you should try when you begin to write a proof:

1. Understand the statement to be proved: make sure you know the definitions of all

terms that appear in the statement.

2. Identify the assumption(s) and the conclusion, and determine the logical form of

the statement.



3. Look for the key ideas: Ask yourself what is needed to reach the conclusion. Find relation-
ships among the terms, the equations, and formulas involved. Recall known facts and previous

results about the antecedent and consequence.

e Proof of (P = Q; v Q2): Note that

(P=QvQ) < [(P/\ ~Qp) = QQ}
Example 1.73. If (z,y) is inside the circle (z — 6)* + (y — 3)® =8, then z > 4 or y > 1.

Proof. Suppose that (z,y) is inside the circle (z—6)*+(y—3)? = 8 and = < 4. Then (z—6)*+(y—3)* <
8 and 6 —x > 2. Therefore,

(y—3)2<8—(6—2)’<8—4=4

which implies that |y — 3| < 2; thus —2 < y — 3 < 2 which further shows 1 < y < 5. D

1.8 Proofs from Number Theory

Theorem 1.74 (The Division Algorithm). For all integers a and b, with a # 0, there exist unique
integer ¢ and r such that b= aq+r and 0 < r < |al.

1. The integer a is the divisor (“,ﬁc‘ ¥c), b is the divident (%‘}U,f #), ¢ is the quotient (7 ), and r
is the remainder (4 3#c).

2. a is said to divide b if b = aq for some integer gq.

3. A common divisor (2 F]#&) of nonzero integers a and b is an integer that divides both a and
b.

Definition 1.75. Let a and b be non-zero integers. We say the integer d is the greatest common

divisor (gcd) of a and b, and write d = ged(a, b), if
1. d is a common divisor of a and b.
2. every common divisor ¢ of a and b is not greater than d.

Theorem 1.76. Let a and b be non-zero integers. The ged of a and b is the smallest positive linear

combination of a and b; that is,
ged(a, b) = min{am +bn ‘ am—+bn >0,m,ne Z} :

Proof. Let d = am + bn be the smallest positive linear combination of a and b. We show that d

satisfies (1) and (2) in the definition of the greatest common divisor.



1. First we show that d divides a. By the Division Algorithm, there exist integers ¢ and r
such that a = dq + r, where 0 < r < d. Then

r=a—dq=a— (am+bn)g=a(l —m)+b(—nq);

thus 7 is a linear combination of a and b. Since 0 < r < d and d is the smallest positive linear
combination, we must have r = 0. Therefore, a = dg; thus d divides a. Similarly, d divides b

(replacing a by b in the argument above); thus d is a common divisor of a and b.

2. Next we show that all common divisors of ¢ and b is not greater than d. Let ¢ be a

common divisor of @ and b. Then ¢ divides d since d = am + bn. Therefore, ¢ < d.

By (1) and (2), we find that d = ged(a, b). D
Theorem 1.77 (Euclid’s Algorithm ($& #& 4p ‘,/TT i2)). Let a and b be positive integers with a < b.
Then there are two lists of positive integers qi, q2, -+, Qk—1, Qk, Qk+1 ANA T1, T, ++, Tk—1, Tk, Tktl
such that

1. CL>7’1>T2>"'>Tk_1>7"k>7“k+1:0.

2.b=aq+r1, a=riqa+ry T1L="2q3+7T3, o, Th-3 = Tk-2Qk—1+Tk-1, )

Tho1 = TrQrs1 (that is, rp1 = 0).
Furthermore, ged(a,b) = r, the last non-zero remainder in the list.

Proof. Let a and b be positive integers with a < b. By the Division Algorithm, there exists positive
integer ¢; and non-negative integer r; such that b = aq; +r; and 0 < r; < a. If r; = 0, the lists
terminate; otherwise, for 0 < r; < a, there exists positive integer ¢; and non-negative integer ry such
that @ = r1qo + 79 and 0 < ro < r1. If ro = 0, the lists terminate; otherwise, for 0 < ro < rq, there
exists positive integer g3 and non-negative integer r3 such that r; = rogs + 73 and 0 < r3 < 7.
Continuing in this fashion, we obtain a strictly decreasing sequence of non-negative integers

r1,72,73,---. This lists must end, so there is an integer k such that r,.; = 0. Thus we have

To=a>7T1>1T9g> - >7Tp>7Tpy; =0,
Ti—1 :quJ'Jrl—i-?”jJrl for all 1 <]< k,

b=roq1+r1.
We now show that r, = d = ged(a, b).
1. The remainder r; divides r_1 since ry_1 = riqpr1. Also, ry divides r,_o since
Tk—2 = Tk—1qk + Tk = TEQet1qk + Tk = Tk(Ge@rr1 + 1) -

Therefore, by the fact that 7,1 = 7;q;11 + ;41 for all 1 < j <k, we find that r; divides r; for
all 0 < j < k — 1; thus 7, divides linear combinations of 7, ; thus rj divides a (which is ry) and

b (which is roqy + 71).



2. On the other hand, d divides 7 since r;1 = b — aq,. Also, d also divides ry since
ro =11 —ag =b—aq —ag =b—alq + ).

Therefore, by the fact that rj;1 =71 — 7;g;41 for all 1 < j <k, we find that d divides 7, for
all 0 < j < k.

By (1), 7 is a common divisor of a and b. By (2), the greatest common divisor of a and b must

divide ry; thus we conclude that r, = ged(a, b). o

Example 1.78. Using Euclid’s algorithm to compute the greatest common divisor of 12 and 32:

32=12x2+8,
12=8x1+4,
8=4x24+0.

Therefore, 4 = ged(12,32). Moreover, by working backward,
4=12-8x1=12—-(32-12x2)x1=12x3+32x (—1).

Definition 1.79. We say that non-zero integers a and b are relatively prime (3 %) or coprime,

if ged(a,b) = 1.

Lemma 1.80 (Euclid’s Lemma). Let a,b and p be integers. If p is a prime and p divides ab, then p

divides a or p divides b.

Proof. Let a,b be integers, and p be a prime. Suppose that p divides ab, and p does not divides
a. Then ged(p,a) = 1; thus there exist integers m and n such that 1 = am + pn. Therefore,
b = abm + apn. Since p divides ab, we conclude that p divides b (since b is a linear combination of

ab and p). D

Remark 1.81. The same proof of Euclid’s Lemma can be applied to shown a more general case:

Let a, b, p be integers such that p divides ab. If a and p are relatively prime, then p divides b.

2 Sets and Induction

2.1 Basic Concept of Set Theory

Definition 2.1. A set is a collection of objects called elements or members of the set. To denote

a set, we make a complete list {1, x5, -+ ,zx} or use the notation

{x : P(z)} or {ZL“P(ZL’)},

where the sentence P(z) describes the property that defines the set (the set {z |P(z)} is in fact the
truth set of the open sentence P(x)). A set A is said to be a subset of S if every member of A is
also a member of S. We write z € A (or A contains x) if x is a member of A, write x ¢ A if x is not
a member of A, and write A < 5 (or S includes A) if A is a subset of S. The empty set, denoted ¢,

is the set with no member.



Example 2.2. The set A ={1,3,5,7,9,11,13} may also be written as
{x}xeN,xis odd, and z < 14} or {xeN‘xis odd, and z < 14}.

Remark 2.3. Beware of the distinction between “is an element of” and ”is a subset of”. For example,
let A={1,{2,4},{5},8}. Then 4 ¢ A, {5} € A, {1,{5}} = Aand {{5}} < A, but {5} ¢ A.

Remark 2.4. Not all open sentences P(z) can be used to defined sets. For example, P(z) =
“x is a set” is not a valid open sentence to define sets for otherwise it will lead to the construction of

a set which violates the axiom of regularity.

e Direct proof of A< B: (Vz)[(z€ A) = (z € B)].

Direct proof of Ac B
Proof.
Let z be an element in A.

Thus, x € B.
Therefore, A € B. O

e Proof of A C B by contraposition: ~(z€ B) = ~(ze A) or (Vz)[(z ¢ B) = (z ¢ A)].

Proof of A < B by contraposiction

Proof.

Let x be an element.

Suppose that x ¢ B; that is, x is not an element of B.

Thus, = ¢ A.
Therefore, A € B. =

e Proof of A < B by contradiction: ~(3z)[(z € A)a ~(z € B)].

Proof of A < B by contradiction
Proof.
Assume that there exists x € A but = ¢ B.

Thus, PA ~P, a contradiction.
Therefore, A € B. =

Theorem 2.5. (a) For every set A, &J < A.
(b) For every set A, A< A.
(c) For all sets A, B and C, if A< B and B < C, then A < C.

Proof. (a) Note that since there is no element in &, the open sentence P(z) = [(z € &) = (z € A)]

is always true (since the antecedent (x € ¢¥) is always false) for all z.



(b) This follows from that the conditional sentence P = P is a tautology (always true).

(¢) This follows from that [(P = Q) A (Q = R)] = (P = R). o

Definition 2.6. Two sets A and B are said to be equal, denoted by A = B, if (Vz)(z € A & x € B);

that is (A < B) A (B < A). A set B is said to be a proper subset of a set A, denoted by B < A,
it B< Abut A# B.

e Proof of A = B:

Two-part proof of A =B

Proof.

(i) Prove that A < B (by any method.)

(ii) Prove that B < A (by any method).

Therefore, A = B. O

Theorem 2.7. If A and B are sets with no elements, then A = B.

Proof. Let A, B be set. If A has no element, then A = ¢J; thus by the fact that empty set is a subset
of any set, A € B. Similarly, if B has no element, then B < A. O

Theorem 2.8. For any sets A and B, if A< B and A # &, then B # (.

Proof. Let A, B be sets, A < B, and A # . Then there is an element x such that x € A. By the
assumption that A € B, we must have x € B. Therefore, B # (. O

A
\/
.

Definition 2.9. Let A be a set. The power set of A, denoted by Z2(A) or 24, is the colloection of
all subsets of A. In other words, #(A) = {B|B < A}.

e Venn diagrams:

Example 2.10. If A = {a,b,c,d}, then
P(A) = {@7 {a}, {b}, {c}, {d}, {a, b}, {a, c}, {a, d}, {b, c}, {b. d}, {c, d},
{a,b, ¢}, {a,b,d}, {a, c,d}, {b, e, d}, {a, b, c, d}}.

We note that #(A) = 4 and #(Z2(A)) = 16 = 2#(A).



Theorem 2.11. If A is a set with n elements, then P(A) is a set with 2" elements.
Proof. Suppose that A is a set with n elements.

1. If n =0, then A = &; thus Z(A) = {} which shows that Z(A) has 2° = 1 element.

2. If n > 1, we write A as {1, xa, -+ ,x,}. To describe a subset B of A, we need to know for each
1 < i < n whether z; is in B. For each z;, there are two possibilities (either z; € B or x; ¢ B).

Thus, there are exactly 2" different ways of making a subset of A. Therefore, ?(A) has 2"

elements. o
Theorem 2.12. Let A, B be sets. Then A < B if and only if Z(A) < P (B).
Proof. Let A, B be sets.

(=) Suppose that A € B and C € Z(A). Then C is a subset of A; thus the fact that A € B
implies that C' < B. Therefore, C' € Z(B).

(<) Suppose that A & B. Then there exists z € A but x ¢ B. Then {z} < A but {#} € B which
shows that Z(A) & Z(B). o

2.2 Set Operations
Definition 2.13. Let A and B be sets.

1. The union of A and B, denoted by A U B, is the set {z|(z € A) v (z € B)}.
2. The intersection of A and B, denoted by A n B, is the set {z|(z € A) A (z € B)}.

3. The difference of A and B, denoted by A — B or A\B, is the set {z|(z € A) A (z ¢ B)}.

Definition 2.14. Two sets A and B are said to be disjoint if An B = (.

AUB ANB

e Venn diagrams:

A-B Disjoint sets 4 and B



Theorem 2.15. Let A, B and C' be sets. Then
(a) AcAuB; (b)AnBcCA; (c)Angd=g; (d) Auvg=A;
@ AnA=4; (HAVA=A; (9 AG=4; (b) PA=0;
(i) Au B=B U A; }
(commutative laws)
(j)) AnB=BnA;
(k) A (BUC):<AUB)UC,'}
(associative laws)
() An(BnC)=(AnB)nC;
(m) An(BuC)=(AnB)u(AnC);
m) Au(BnC)=(AnB)u(AnC);
)

(o) A Bifand only if Ao B=B; (p) A< B ifandonly if AnB=A;

} (commutative laws)

(q IfA< B, then AuC =BuC; (r) If A< B, then AnC < BnC.
Note: (Au B)nC # Au (B n () in general!

Proof of Theorem . We only prove (m) and (n).

(m) Letze An(BuC(C). Then z € Aand x € Bu C. Thus,

(a) if x € B, then x € An B.
(b) ifz e C,thenze AnC.

Therefore, x € An B or x € A n C which shows z € (An B) u (A n C); thus we establish that
An(BuC)< (AnB)u(AnC().
On the other hand, suppose that z € (An B) u (An C).

(a) ifz€ An B, then 2z € A and x € B.
(b) f re AnC, thenxe Aand z e C.

In either cases, x € A; thusif x € (An B) u (A C), then x € A but at the same time x € B
or x € C. Thus, x € A and x € B u C which shows that x € A n (B u C). Therefore,

(AnB)u(AnC)c An(Bu(C).

(p) (=) Suppose that A < B. Let = be an element in A. Then x € B since A € B; thusx € An B
which implies that A € A n B. On the other hand, it is clear that A n B < A, so we conclude
that An B = A.

(<) Suppose that An B = A.Let = be an element in A. Then x € A n B which shows that
x € B. Therefore, A € B. O



Remark 2.16. Theorem can be applied to show (k), (¢), (m) and (n). For example, to show
(m), we let x be an element in the universe, and P, Q and R denote the propositions = € A, z € B
and x € C, respectively. Note that Theorem provides that

PA(QVvR)< [(PAQ) v (PAR).

(1) Let xe An (Bu(C). Then z € A and x € B u (' thus the proposition P A (Q v R) is true.
Therefore, the proposition [(P A Q) v (P A R)] is also true which implies that € A n B or
reAnCithus An(BuC)< (AnB)u(AnC).

(2) Working conversely, we find that if t € An Boraze AnC, then x € An (B uC). Therefore,
(AnB)u(AnC)c An(Bu().

From (1) and (2), we conclude that An (BuC)=(AnB)u (AnC).

Definition 2.17. Let U be the universe and A € U. The complement of A, denoted by A°, is the
set U\A.

Theorem 2.18. Let U be the universe, and A, B < U. Then

(a) (A% =A.
(b) AvA*=U.
(c) AnA'= .

(d) A\B=An B,
(e) AC B if and only if B* < A"

(f) An B= if and only if A< B
(g) (AU B) = A~ B

(De Morgan’s Law)
(h) (AnB)t= A"y B

Proof. We only prove (a), (e) and (g), and the others are left as exercises.
(a) By the definition of the complement, z € (A%)" if and only if z ¢ A" if and only if x € A.
(e) By the equivalence of P = Q and ~Q =~P, we conclude that
Vo) @ed) = @zeB)] < (a)@¢B) = (o¢A)
and the bi-directional statement is identical to that
AcBe B'c A",
(e) (Alternative proof) Using (a), it suffices to show that A = B = B* < A", Suppose that A < B,

and B* ¢ A% Then there exists z € B* and = € A; however, by the fact that A € B, z has to

belong to B, a contradiction.



(g) By the equivalence of ~(P v Q) and (~P) A (~Q), we find that
(Vz) ~ [(x eA) v (ze B)} < (Va) [(x ¢A)A (¢ B)]
and the bi-directional statement is identical to that

(AuB) =A"nB".

(g) (Alternative proof) Let x be an element in the universe.

re(AuB) ifandonlyifz ¢ AuB
if and only if it is not the case that z € Aor x € B
ifand onlyif t ¢ Aand v ¢ B
if and only if x € A* and z € B
if and only if x € A" n B°. O

Definition 2.19. An ordered pair (a,b) is an object formed from two objects a and b, where a is
called the first coordinate and b the second coordinate. Two ordered pairs are equal whenever

their corresponding coordinates are the same.

An ordered n-tuples (ay,as,- - ,a,) is an object formed from n objects ay, ag, -+, a,, where
a; is called the j-th coordinate. Two n-tuples (a1, as,--- ,a,), (c1,¢c2, - ,¢,) are equal if a; = ¢; for
ie{l,2,- ,n}

Definition 2.20. Let A and B be sets. The product of A and B, denoted by A x B, is
Ax B={(a,b)|ac Abe B}.
The product of three or more sets are defined similarly.
Example 2.21. Let A = {1,3,5} and B = {*, ©}. Then
Ax B={(1,%),(3,%),(5,%),(1,0),(3,0),(5,0)}.

Theorem 2.22. If A, B,C and D are sets, then

(a) Ax (BuC)=(AxB)u(Ax().

(b) Ax (BNnC)=(AxB)n(Ax(C).

() Ax =0

(d) (AxB)n(CxD)=(AnC)x(BnD).

(e) (AxB)u(CxD)c(AuC)x(BuD,).

(f) (Ax B)n(BxA) =(AnB)x (An B).



2.3 Indexed Families of Sets

Definition 2.23. Let .# be a family of sets.

1. The wnionof the family .# or the union over .#, denoted by |J A, is the set {x‘:z: €
AeF
A for some A e .F } Therefore,

ve|JA ifandonlyif (F3AeZ)(veA).

AeF

2. The intersectionof the family .% or the intersection over %, denoted by (] A, is the set
AeF

{.7: ’ xe Aforall Ae 7 } Therefore,

xeﬂA if and only if (VAe .Z7)(ze A).

AeF

Example 2.24. Let .# be the collection of sets given by

7= (- fnen.

n

Then |J A = (0,2) and (] A = {1}. In this kind of cases, we also write |J A and (] A as

AeF AeF AeF AeF

fj [l 2 — 1] and ﬁ [l 2 — l} respectivel
n7 n o na n ) P Y-

n=1

Example 2.25. Let .# be the collection of sets given by

#={(-L2e fnen).

Then |J A= (—1,3) and (] A =[0,2]. In this kind of cases, we also write (J A and () A as

AeF AeF AeF AeF
0

@ <_l 2+l) and ) (—l 2+l> respectivel
n’ n ne1 \on’ ) TP v

n=1

Theorem 2.26. Let .F be a family of sets.

(a) For every set B in the family %, (| A< B.
AeF

(b) For every set B in the family %, B< ] A.

AeF
(¢) If the family F is non-empty, then (| A< |J A.
AeF AeF

(d) (N 4) = U 4"

AeF A€e.

9

(De Morgan’s Law)



Proof. We only prove (d). Let x be an element in the universe. Then

c
xe( N A) ifandonlyifz ¢ () A

AeF AeF

if and only if ~ (x € N A)

AeF
if and only if ~(VAe.Z)(ze A)
if and only if (3 A € ~(zreA)
if and only if (3A € Z)(x ¢ A)
if and only if (3A € .%)(z e A%)
if and only if z € U At O

AeF

7)
7)

Theorem 2.27. Let % be a non-empty family of sets and B a set.

(a) If B< A forall Ae %, then B< () A.

AeF

(b) If A< B forall Ae #, then |J A< B.

AeF

Proof. (a) Suppose that B € A for all A€ #, and x € B. Then z € A for all A € #. Therefore,
(VAe F)(x e A) or equivalently, x € (] A.

AeF
(b) Suppose that A< B forall Ae.%#,and v € |J A. Then x € A for some A € .%. By the fact
that A € B, we find that x € B. e a
Example 2.28. Let % = {[-r,r?+1)|reRand r > 0}. Then |J A=Rand [\ =[0,1). (We
AeF AeTF
also write |J Aand () Aas J[-rr*+1)and ([-r,r*+ 1), respectively.)

AeF AeF r=0 r=0

Proof. 1. If x € R, then z € [—r,r* + 1) with r = |z| since —|z| < x < 22 + 1. Therefore, R < |J A.

AeF

2. If z € [0,1), then z € [—r,r? + 1) for all r > 0; thus [0,1) = [ A. If z € [) A, then
AeF AeF
zre[-r,r+1) forall r = 0; thus z > —r and z < r?+ 1 for all r > 0. In particular, x > 0 and

< 1. o

Definition 2.29. Let A be a non-empty set such that for each a € A there is a corresponding set
Ay The family {Aa } a € A} is an indexed family of sets, and A is called the indexing set of

this family and each o € A is called an index.

Remark 2.30. 1. The indexing set of an indexed family of sets may be finite or infinite, the member
sets need not have the same number of elements, and different indices need not correspond to

different sets in the family.

2. If # = {A,]a € A} is an indexed family of sets, we also write |J A as (J A, and write
AeF aeA
(| Aas [) Aa.

AeF a€A



3. Another way for the union and intersection of indexed family of sets whose indexing set is N

or Z is
o0 o0
JA4.=JA: and (4. =[] A4
neN n=1 neN n=1
and
o0 o0
UAn= | 4 and 4= () 4.
nez n=-—ao neN n=—o0
Also, the union and intersection of sets A4, As, Ag, -+, A1go can be written as
100 100
) 4n=J4. and N A.=()A4
4<n<100 n=4 4<n<100 n=4
and etc.

Definition 2.31. The indexed family .# = {Aa ’ o€ A} of sets is said to be pairwise disjoint if
for all o, B € A, either A, = Ag or A, N Ag = .

Definition 2.32. The indexed family .# = {Ak ‘ ke N} of sets is said to be a nested family of
sets if for all 7,5 € N, 7 < 7, then A; < A,.
2.4 Mathematical Induction
e Peano’s Axiom for natural numbers:
1. 1 is a natural number.

2. Every natural number has a unique successor which is a natural number (+1 is defined on

natural numbers).
3. No two natural numbers have the same successor (n + 1 = m + 1 implies n = m).
4. 1 is not a successor for any natural number (1 is the “smallest” natural number).

5. If a property is possessed by 1 and is possessed by the successor of every natural number that
possesses it, then the property is possessed by all natural numbers. (4r% % BAt p A% 1 1
Py O E o 2 RE TR BT O REhT - B RETIRET 0 TRETF PP R AT
§HF TR

The 5th statement in the Peano Axiom for natural numbers can be restated as the famous

e Principle of Mathematical Induction (PMI): If S < N has the property that
(I)1eS,and (2) n+ 1€ S whenever ne S,

then S = N.

Definition 2.33. A set S < N is said to be inductive if it has the property that n+1 € S whenever

nes.



Note: There are many inductive sets, but only one inductive set contains 1 (which is N).
e Inductive definition: Inductive definition is a way to define some “functions” f(n) for all natural
numbers n. It is done by describe the first object f(1), and then the (n + 1)-th object f(n + 1) is
defined in terms of the n-th object f(n). We remark that in this way of defining f, PMI ensures
that the collection of all n for which the corresponding object f(n) is defined is N.

Example 2.34. The notation > x; can be defined by

k=1
1 n+1 n
1. ap=x1; 2. ForallneN, > xp= > 2p+ Tpy1-
k=1 k=1 k=1

Example 2.35. The notation | [ xj can be defined by
k=1

1 n+1 n
1. Y o = 2 2.F0ralln€N,ka:(nxk>~xn+1.
k=1 =1 k=1

Example 2.36. The factorial n! can be defined by
1. I!=1; ForallneN, (n+1)!=nlx(n+1).

PMI can provide a powerful method for proving statements that are true for all natural numbers.

Suppose that P(n) is an open sentence concerning the natural numbers.

Proof of (Vn € N)P(n) by mathematical induction
Proof.
Let S denote the truth of P.
(i) Basis Step. Show that 1 € S.
(ii) Inductive Step. Show that S is inductive by showing that
ifne S, thenn+1€S.
Therefore, PMI ensures that the truth set of P is N. o

or

Proof of (Vn € N)P(n) by mathematical induction
Proof.

(i) Basis Step. Show that P(1) is true.
(ii) Inductive Step. Suppose that P(n) is true.

Therefore, P(n + 1) is true.
Therefore, PMI ensures that (Vn € N)P(n) is true. o

Example 2.37. Prove that for every natural number n,
1+3+5+-+(2n—1)=n.
Proof. Let P(n) be the open sentence 1 +3 +5+ -+ (2n — 1) = n?.

1. P(1) is true since 1 = 1.



2. Suppose that P(n) is true. Then
1+3+5+-+0C2n—1+2n+1)=n*+2n+1) = (n+1)*
which shows that P(n + 1) is true.
Therefore, PMI ensures that (Vn € N)P(n) is true. a
Example 2.38 (De Moivre’s formula). Let 6 be a real number. Prove that for every n e N,
(cos @ +isinf)" = cos(nb) + isin(nd) .

Proof. Let § € R and P(n) be the open sentence (cos @ + isinf)" = cos(nf) + i sin(nd).

1. Obviously P(1) is true.

2. Suppose that P(n) is true. Then

(cosf + isin )" = (cos O + isin )" - (cosf + isin#) = [cos(nfd) + isin(nb)] - (cos + isin6)
= [cos(nf) cos§ — sin(nf) sin 6] + i[ cos(nd) sin 6 + sin(nd) cos 6]
= cos(n + 1)0 + isin(n + 1)0

which shows that P(n + 1) is true.
Therefore, PMI ensures that (Vn € N)P(n) is true. o

Theorem 2.39 (Archimedean Property). For all natural numbers a and b, there ezists a natural

number s such that sb > a.
Proof. We fix b and make induction on a.

1. If a = 1, then the choice of s = 2 ensures that 2b > 1. Therefore, the Archimedean property
holds for a = 1 (with fixed b).

2. Suppose that if a = k, there exists s = s* € N such that s*b > k. Then the choice of s = s* 41

ensures that sb = (s* + 1)b > k + b > k + 1; thus Archimedean property holds for a = k + 1
(with fixed b).

Therefore, PMI implies that Archimedean property holds for all a € N (with fixed b) and the theorem
is concluded. =

e Generalized Principle of Mathematical Induction (GPMI): If S < N has the property that
(1) ke S,and (2) n+ 1€ S whenever ne S,
then S ={k,k+1,k+2,---} = {n—i—k—l‘neN}.

Theorem 2.40. PMI implies GPMI, and vice versa.



Proof. 1t suffices to show that PMI implies GPMI. Let T' = {n e N ‘ k+n—1€ S}. Then T"< N.

Moreover,
1. 1e T since k€ S if and only if 1 € T
2. It neT, then k+n—1€.S; thus k 4+ n € S which implies that n + 1 € 7.
Therefore, PMI ensures that 7" = N which shows that S = {n eN ‘ n = k:} O
Example 2.41. Prove that n? —n — 20 > 0 for all n > 5.
Proof. LetS:{neN‘nz—n—20>0}.
1. 6 € S since 62 — 6 — 20 = 10 > 0.

2. Suppose that n € S. Then

n+1)2=mn+1)—-20>n*+2n+1-n—-1-20>2n>0.
Therefore, GPMI ensures that S = {neN|n > 6}. D

2.5 Equivalent Forms of Induction

In this section, we establish the equivalence among PMI and the other two principles: the Well-

Ordering Principle and the Principle of Complete Induction.

e Well-Ordering Principle (WOP): Every nonempty subset of N has a smallest element.
Theorem 2.42. PMI implies WOP.

Proof. Assume the contrary that there exists a non-empty set S € N such that S does not have the
smallest element. Define " = N\S, and Ty = {n € N‘{l,Q, o n} C T}. Then we have Ty < T.
Also note that 1 ¢ S for otherwise 1 is the smallest element in S, so 1 € T' (thus 1 € Tp).

Assume k € Ty. Since {1,2,--- k} =T, 1,2,---k¢ S. lf k+ 1€ S, then k+ 1 is the smallest

element in S. Since we assume that S does not have the smallest element, k +1 ¢ S; thus k + 1 €

T =k + le To.
Therefore, by PMI we conclude that Ty = N; thus 7' = N (since Ty € T') which further implies
that S = & (since T'= N\\S). This contradicts to the assumption S # ¢J. o

e Principle of Complete Induction (PCI): If S < N has the property
VneN, neS whenever {1,2,--- n—1} <S5, (2.1)

then S = N.
We note that the set {1,2,---,n — 1} denotes the collection of natural numbers that are not

greater than n — 1.



Theorem 2.43. WOP implies PCI.

Proof. Assume the contrary that for some S # N, S has the property (El!) Define T" = N\S.
Then T is a non-empty subset of N; thus WOP implies that 7" has a smallest element k. Then
1,2,---  k —1¢ T which is the same as saying that {1,2,--- ,k — 1} < S. By property (@), keS

which implies that k ¢ T', a contradiction. O
To establish the equivalent among PMI, WOP and PCI, it suffices to establish the following
Theorem 2.44. PCI implies PMI.
Proof. Let S < N has the property
(a) 1eS,and (b)n+ 1€ S whenever ne S.
We show that S = N by verifying that k£ € S whenever {1,2,--- [k —1} < S.
1. (a) implies 1 € S; thus the statement “{1,2,--- |k —1} =g < S = 1€ 5" is true.

2. Suppose that {1,2,--- |k —1} < S. Then kK — 1€ S. Using (b) we find that k € S; thus the

statement “{1,2,--- k —1} < S = k € S” is also true.
Therefore, S has property (@) and PCI implies that S = N. D

Theorem 2.45 (Fundamental Theorem of Arithmetic). Every natural number greater than 1 is

prime or can be expressed uniquely as a product of primes.

The meaning of the unique way of expressing a composite number as a
product of primes:
Let m be a composite number. Then there is a unique way of writing m in the form

_ 01 Q2 (o]
m=p; Py~ Pp"

where p; < py < -+ < p, are primes and oy, as, - - - , ,, are natural numbers.

Proof based on WOP. We first show that every natural number greater than 1 is either a prime or a

products of primes, then show that the prime factor decomposition, when it is not prime, is unique.

1. Suppose that there is at least one natural number that is not a prime and cannot be written
as a product of primes. The the set S of such numbers is non-empty, so WOP implies that S
has a smallest element m. Since m is not a prime, m = st for some natural numbers s and ¢
that are greater than 1 and less than m. Both s and ¢ are less than the smallest element of S,
so they are not in S. Therefore, each of s and ¢ is a prime or is the product of primes, which

makes m a product of primes, a contradiction.

2. Suppose that there exist natural numbers that can be expressed in two or more different ways
as the product of primes, and let n be the smallest such number (the existence of such a number
is guaranteed by WOP). Then

n=pips i =g gy gl



for some n,m € N, where each p;, ¢; is prime and p; # p; and ¢; # ¢; if @ # j. Then p; divides

qf1q§2 -+ gPm which implies that p; = ¢; for some j € {1,---,m}. Then % =" is a natural
Y41 a;j
number smaller than n that has two different prime factorizations, a contradiction. =

Alternative Proof based on PCI. Let m be a natural number greater than 1. We note that 2 is a
prime, so the statement is true when m is 2. Now assume that k is a prime or is a product of
primes for all k£ such that 1 < k < m. If m has no factors other than 1 and itself, then m is prime.
Otherwise, m = st for some natural numbers s and ¢ that are greater than 1 and less than m. By
the complete induction hypothesis, each of s and ¢ either is prime or is a product of primes. Thus,
m = st is a product of primes, so the statement is true for m. Therefore, we conclude that every

natural number greater than 1 is prime or is a product of primes by PCI. O

Theorem 2.46. Let a and b be nonzero integers. Then there is a smallest positive linear combination

of a and b.

Proof. Let a and b be nonzero integers, and S be the set of all positive linear combinations of a and
b; that is,

S ={am+bn|m,neZ,am+bn>0}.
Then S # @ sincea-1+b-0>0o0ra-(—1)+b-0>0. By WOP, S has a smallest element, which

is the smallest positive linear combination of a and b. =

Theorem 2.47 (Division Algorithm). For all integers a and b, where a # 0, there exist a unique

pair of integers (q,r) such that b=aq+r and 0 < r < |a|. In notation,
(¥ (a,5) € (Z\{0)) x Z)(Ag,r) € Zx Z)[(a=bg+7) A (0 <7 < [a])].

Proof. We only prove the case that a > 0 (for if @ < 0, we apply the Division Algorithm for b and
—a to conclude this case). Let S = {b— ak ‘ keZandb—ak = 0}.

1. If 0 € S, then a divides b; thus ¢ = b and r = 0.
a

2. If 0 ¢ S, then b # 0. It is clear that if b > 0, then S # . If b < 0, then —b > 0; thus
the Archimedean property (Theorem ) implies that there exists k € N such that ak > —b.
Therefore, b — a(—k) > 0 which also implies that S # J. In either case, S is a non-empty
subset of N; thus WOP implies that S has a smallest element r. Then b — aq = r for some
q € Z; thus b= aq + r and r > 0.

Next, we show that r < |a| = a. Assume the contrary that r > |a| = a. Then b—a(q+1) =

b—aq—a=r—a > 0. Since we assume that 0 ¢ S, we must have b — a(q+ 1) > 0. Therefore,
O<b—alg+1l)=r—a<r=b—aq

which shows that r is not the smallest element of S, a contradiction.



To complete the proof, we need to show that the pair (g, r) is unique. Suppose that there

exist (qq,71) and (gg,r2), where 0 < 71,79 < |a|, such that
b=aq +r =aqgy+1ry.

W.L.O.G., we can assume that r; = ro; thus a(ga — q1) =11 — 19 = 0. Therefore, a divides

r1 — ro which is impossible if 0 < r;{ — ro < a. Therefore, r; = 5 and then ¢; = ¢». o



3 Relations and Partitions

3.1 Relations

Definition 3.1. Let A and B be sets. R is a relation from A to B if R is a subset of A x B. A
relation from A to A is called a relation on A. If (a,b) € R, we say a is R-related (or simply related)
to b and write aRb. If (a,b) ¢ R, we write alRb.

Example 3.2. Let R be the relation ”is older than” on the set of all people. If a is 32 yrs old, b is
25 yrs old, and c is 45 yrs old, then aRb, cRb, aRc.
Similarly, the "less than” relation on R is the set {(m, Y) ‘ x < y}.

Remark 3.3. Let A and B be sets. Every subset of A x B is a relation from A to B; thus every
collection of ordered pairs is a relation. In particular, the empty set ¢ and the set A x B are relations
from A to B (R = (J is the relation that “nothing” is related, while R = A x B is the relation that

“everything” is related).

Definition 3.4. For any set A, the identity relation on A is the (diagonal) set
Iy ={(a,a)|aec A}.

Definition 3.5. Let A and B be sets, and R be a relation from A to B. The domain of R is the
set
Dom(R) = {z € A|there exists y € B such that 2Ry} = {x € A|(3y € B)(zRy)},

and the range of R is the set
Rng(R) ={ye B ‘ there exists « € A such that Ry} = {y € B ‘ (Jz e A)(zRy)} .

In other words, the domain of a relation R from A to B is the collection of all first coordinate of

ordered pairs in R, and the range of R is the collection of all second coordinates.

Definition 3.6. Let A and B be sets, and R be a relation from A to B. The inverse of R, denoted
by R, is the relation

R™'={(y,x) € B x A|(z,y) € R (or equivalently, zRy)} .

In other words, xRy if and only if yR~ 'z or equivalently, (z,y) € R if and only if (y,z) € R~1.

Example 3.7. Let T = {(x, y) eR xR ’ y < 42? — 7}. To find the inverse of T', we note that

(x,y)ET_I(:)(y,x)eT@x<4y2—7<:>x—|—7<4y2(:>y2>xl_7
©(x7y)e{(m,y)eRxR\x+7<0}u{(x,y)eRxR]y2>$+7>0},

4
Theorem 3.8. Let A and B be sets, and R be a relation from A to B.

(a) Dom(R™') = Rng(R). (b) Rng(R™') = Dom(R).



Proof. The theorem is concluded since

beDom(R™") < (Jae A)[(b,a) e R < (3ac A)[(a,b) € R] < be Rng(R),
a€Rng(R™') < (3be B)[(b,a) e R"'] < (3be B)[(a,b) € R] < a € Dom(R). 0

Definition 3.9. Let A, B, C be sets, and R be a relation from A to B, S be a relation from B to
C. The composite of R and S is a relation from A to C, denoted by S o R, given by

SoR={(a,c)e AxC]|there exists b € B such that (a,b) € R and (b,c) € S}
— {(a,c) € Ax c( (3be B)[(aRb) A (bsc)}}.

We note that Dom(S o R) € Dom(R) and it may happen that Dom(S o R) & Dom(R).

Example 3.10. Let A = {1,2,3,4,5}, B = {p,q,r,s,t} and C = {x,y, z, w}. Let R be the relation
from A to B:

R: {(17p)’<1’q)7(27q)7(3’T)’(47S)}
and S be the relation from B to C-:

S ={(p.),(q.7),(q.y),(s,2), (t,2)}.
Then So R ={(1,z),(1,y),(2,2),(2,9), (4,2)}.

Example 3.11. Let R = {(a:,y)eRxR‘y:x—i—l} and S = {(m,y)eRxR|y:$2}. Then

RoS={(z,y) eRxR|y=2a"+1},
SoR={(z,y) eRxR|y=(z+1)°}.

Therefore, So R # Ro S.

Theorem 3.12. Suppose that A, B,C, D are sets, R be a relation from A to B, S be a relation from
B to C, and T be a relation from C to D.

(a) (R7)™ =R
(b) To(SoR)=(ToS)oR (so composition is associative).
(¢c) IpoR=R and Rols = R.
(d) (SoR)'=R1'oS™
Proof. (a) the conclusion following from that

(a,b)e (R < (hja)e R"' < (a,b) e R.



(b) Since SoR is a relation from A to C, To(SoR) is a relation from A — D. Similarly, (T0S)oR
is also a relation from A to D. Let (a,d) € A x D. Then using (b),

(a,d)eTo(SoR) < (JceC)[(a,c)e SoR A (c,d) €
HceC’)(HbeB)[(a,b)eR/\(b,c)eS/\( d)eT]
(b,c) € B x C)[(a,b) € R A (b,c)eS A (c,d)eT]
beB)(HceC)[(a,b)eR/\(b,c)ES/\( d)eT]
be B)[(a,b) eR/\(, ToS]

(
d)e(T'oS)o

7]

(
< (
< (3
< (3
< (3
< (a,

Therefore, T o (SoR) = (T'0S)o R.
(¢) Let (a,b) € A x B be given. Then

(a,b) e Ipo R« (3ce B)[(a,c) € R A (c,b) € Ip] .
Note that (¢, b) € I if and only if ¢ = b; thus the fact that b € B implies that
(3ce B)[(a,c) € R A (c,b) € Ip] < (a,b) € R.

Therefore, (a,b) € Iz o R < (a,b) € R. Similarly, (a,b) € RoI4 < (a,b) € R.

(d) Let (a,c) € A x C. Then
(c,a) e (SoR)™ < (a,c)e SoR< (3be B)[(a,b) € R A (b,c) € 5]

< (dbe B) [((ﬁ, bye S7' A (bya) e R—l}
< (c,a)e R oS )

3.2 Equivalence Relations

Definition 3.13. Let A be a set and R be a relation on A.
1. Ris reflexive on A if (V€ A)(xRz) (or equivalently, /4 < R).
2. Ris symmetric on A if [V (z,y) € A x A](zRy < yRz) (or equivalently, R = R™").
3. R is transitive on A if [V (z,y,2) € A x A x A][(zRy) A (yRz)] = (zRz)].

A relation R on A which is reflexive, symmetric and transitive is called an equivalence relation
on A.

Example 3.14. The relation “divides” on N is reflexive and transitive, but not symmetric. The

relation “is greater than” on N is only transitive (#£# &) but not reflexive and transitive.

Example 3.15. Let A be a set. The relation “is a subset of” on the power set Z?(A) is reflexive,

transitive but not symmetric.



Example 3.16. The relation S = {(x,y) eRxR ‘ 22 = y2} is reflexive, symmetric and transitive
on R.

Example 3.17. The relation R on Z defined by R = {(z,y) €L XZ | x+yis even} is reflexive,

symmetric and transitive.

Remark 3.18. An equivalence relation is often denoted by ~ (the same symbol as negation but ~
as negation is always in front of a proposition while ~ as an equivalence relation is always between

two elements in a set).

Definition 3.19. Let A be a set and R be an equivalence relation on A. For x € A, the equivalence

class of © modulo R (or simply x mod R) is a subset of A given by
T = {yeA‘mRy}.

Each element of T is called a representative of this class. The collection of all equivalence classes
modulo R, called A modulo R, is denoted by A/R (and is the set A/R = {Z |z € A}).

Example 3.20. The relation H = {(1,1),(2,2),(3,3),(1,2),(2,1)} is an equivalence relation on the
set A ={1,2,3}. Then
1=2={1,2} and 3={3}.

Therefore, A/H = {{1,2}, {3}}.

Theorem 3.21. Let A be a non-empty set and R be an equivalence relation on A. For all x,y € A,

we have
(a) xeZ and T < A.
(b) xRy if and only if T = y.

(¢) xRy if and only if T ny = .

Proof. 1t is clear that (a) holds. To see (b) and (c), it suffices to show that “zRy = T = y” and
“CRy=cny=J"

Assume that xRy. Then if 2z € z, we have xRz. The symmetry and transitivity of R then
implies that yRz; thus z € y which implies that x < y. Similarly, ¥ < z; hence we conclude that
“tRy=7=7"

Now assume that T n iy # . Then for for some z € A we have z € T n yj. Therefore, xRz and

yRz. Since R is symmetric and transitive, then xRy which implies that “aRy =z ny = " D

Definition 3.22. Let m be a fixed positive integer. For z,y € Z, we say x is congruent to y
modulo m (2 m 5 Gi #PF x 4 y) and write x = y (mod m) if m divides (x —y). The number

m is called the modulus of the congruence.



Example 3.23. Using 4 as the modulus, we have

3 =3 (mod 4) because 4 divides 3 -3 =0,
9 =15 (mod 4) because 4 divides 9 — 5 =4,
—27 =1 (mod 4) because 4 divides —27 — 1 = —28,
20 = 8 (mod 4) because 4 divides 20 — 8 = 12,
100 = 0 (mod 4) because 4 divides 100 — 0 = 100.

Theorem 3.24. For every fized positive integer m, the relation “congruence modulo m” is an

equivalence relation on Z.

Proof. 1t is easy to see that © = z (mod m) for all x € Z. Therefore, congruence modulo m is
reflexive on Z.

Now we show that the relation “congruence modulo m” is symmetric. Assume that x = y (mod
m). Then m divides  — y; that is, x — y = mk for some k € Z. Therefore, y — x = m(—k) which
implies that m divides y — x; thus y =  (mod m).

Finally, we show that the relation “congruence modulo m” is transitive. Assume that z = y
(mod m) and y = z (mod m). Then z —y = mk and y — z = m/ for some k,¢ € Z. Therefore,

x — z = m(k + ¢) which implies that m divides  — y; thus z = z (mod m). o

Definition 3.25. The set of equivalence classes for the relation congruence modulo m is denoted by
/.

Remark 3.26. The elements of Z,, are sometimes called the residue (or remainder) classes

modulo m.

Example 3.27. For congruence modulo 4, there are four equivalence classes:

{--,-16,-12,-8,-4,0,4,8,12,16, - } = {4k |k € Z},

{-,-15,-11,-7,-3,1,5,9,13,17,--- } = {4k + 1| k € Z},
2={-,-14,-10,-6,-2,2,6,10,14,18,- - - } = {4k + 2|k e Z},

{-,-13,-9,-5,-1,3,7,11,15,19,--- } = {4k + 3|k e Z} .

In general, we will prove that the equivalence relation “congruence modulo m” produces m equiv-

alence classes
j={mk+j|keZ}, j=0,1,---,m—1.

The collection of these equivalence classes, by definition Z/(mod m), is usually denoted by Z,,.

Theorem 3.28. Let m be a fixed positive integer. Then

(a) For integers x and y, x =y (mod m) if and only if the remainder when x is divided by m equals

the remainder when y divided by m.

(b) Z, consists of m distinct equivalence classes: L, = {6, 1,---,m— 1}.



Proof. (a) For a given z € Z, let (q(z),7(z)) denote the unique pair in Z x Z obtained by the division
algorithm satisfying

r=mq(x)+r(z) and 0<r(x)<m.

Then

z =y (mod m) < m divides z — y < m divides m(q(z) — q(y)) + r(z) — r(y)
< m divides r(z) — r(y) < r(z) —r(y) =0,
where the last equivalence following from the fact that 0 < r(z),r(y) < m.

(b) By (a), z and y are in the same equivalence classes (produced by the equivalence relation
“congruence modulo m”) if and only if x and y has the same remainder when they are divided
by m. Therefore, we find that

fz{mk‘—kr(z”keZ}:?@ VeelkZ.

Since r(x) has values from {0,1,--- ,m — 1}, we find that Z,, = {6, 1,---,m— 1}. The proof
is completed if we show that knj = @ if k # j and k,j € {0,1,--- ,m — 1}. However, if
zeknj,then

r=mq+k=mqg+j

which is impossible since k # j and k,j € {0,1,--- ,m — 1}. Therefore, there are exactly m

equivalence classes. O

3.3 Partitions

Definition 3.29. Let A be a non-empty set. P is a partition of A if P is a collection of subsets of
A such that

(i) if X € P, then X # .
(i) f XePandYeP,then X =Y or X nY = .
(iii) Y X =A.

XeP

In other words, a partition of a set A is a pairwise disjoint collection of non-empty subsets of A whose

union is A.

Example 3.30. The family ¥ = {[n, n+1) ‘ ne Z} is a partition of R.

Example 3.31. Each of the following is a partition of Z:
1. & ={E, D}, where F is the collection of even integers and D is the collection of odd integers.
2. 2 ={N,{0},Z"}, where Z~ is the collection of negative integers.

3. H ={A|keZ}, where A, = {3k,3k + 1,3k + 2}.



Theorem 3.32. If R is an equivalent relation on a non-empty set A, then A/R is a partition of A.

Proof. First of all, each equivalence class T € A/R must be non-empty since it contains z. Let
and y be two equivalence classes in A/R. If T ny # (J, then there exists z € T n y which implies
that xRz and yRz. By the symmetry and the transitivity of R we have xRy which implies, by (b)

of Theorem , that z = ¥.

Finally, it is clear that (] 7 < A since each z € A. On the other hand, since each y € A
z€eA/R
belongs to the equivalence class y, we must have A < [ J z. Therefore, A= |J z. D
z€A/R z€A/R
Theorem 3.33. Let P be a partition of a non-empty set A. For x,y € A, define xQy if and only if

there exists C € P such that x,y € C'. Then

(a) Q is an equivalence relation on A.
() 4/Q=7P.

Proof. 1t is clear that @) is reflexive and symmetric on A, so it suffices to show the transitivity of ()
to complete (a). Suppose that zQy and yQz. By the definition of the relation @) there exists C; and
C5 in P such that z,y € C; and y, z € Cy; hence C; n Cy # &. Then C = Cs by the fact that P is
a partition and C7, Cy € P. Therefore, x, z € C; which implies that zQz.

Next, we claim that if C' € P, then z € C' if and only if x = C. It suffices to show the direction

“=" gince x € T. Suppose that C' € P and z € C.

1. “C < x7: Let y € C be given. By the fact that x € C' we must have yQxz. Therefore, y € &

which shows C < 7.

2. “C < C7: Let y € & be given. Then there exists C' € P such that T,y € C. By the fact that
x € C, we find that C' n C + . Since P is a partition of A and C’,CNY € P, we must have
C = C~’; thus y € C'. Therefore, x < C.

Now we show that A/Q = P. If C' € P, then C # J; thus there exists x € C for some z € A.
Then the claim above shows that C' = Z € A/Q. Therefore, P < A/Q. On the other hand, if
T € A/Q, by the fact that P is a partition of A, there exists C' € P such that = € C. Then the claim
above shows that £ = C. Therefore, A/Q < P. D

Remark 3.34. The relation () defined in Theorem is called the equivalence relation asso-
ciated with the partition P.

Example 3.35. Let A = {1,2,3,4}, and let P = {{1}, {2, 3}, {4}} be a partition of A with three sets.
The equivalence relation ) associated with P is {(1, 1),(2,2),(3,3),(4,4),(2,3), (3, 2)} The three
equivalence classes for Q are 1 = {1}, 2 = 3 = {2,3} and 4 = {4}. The collection of all equivalence
classes A/Q) is precisely P.



Example 3.36. The collect P = {Ay, A1, Ay, A3}, where
Ap={dk|keZ}), Ai={4k+1|keZ}, Ay={4k+2|keZ}, Ay={dk+3|keZ),

is a partition of Z because of the division algorithm. The equivalence relation associated with the
partition P is the relation of congruence modulo 4, and each A; is the residue class of « modulo 4 for
1=0,1,2,3.

3.4 Modular Arithmetic

Theorem 3.37. Let m be a positive integer and a,b, c and d be integers. If a = ¢ (mod m) and b = d
(mod m), then a +b=c+d (mod m) and a-b=c-d (modm).

Proof. Since a = ¢ (mod m) and b = d (mod m), we have a — ¢ = mk; and b — d = mky for some

k?l,l{fg € Z. Then
a+b=c+mk;+d+ mky=c+d+ m(ks + k2)

and
a-b=(c+mky) - (d+mky)=c-d+m(c-ko+d-ki+ ki ks).

Therefore, a + b= c+d (mod m) and a-b = c¢-d (mod m). D
By Theorem , we are able to define the addition and the multiplication on Z,,.
Definition 3.38. For each natural number m,

1. the sum of the classes T and y in Z,,, denoted by x + v, is defined to be the class containing

the integer x + y;

2. the product of the classes r and y in Z,,, denoted by Z - y, is defined to be the class

containing the integer x - y.

8
=

In symbols, T+ y =2 +y and T -

|

=2.

(@1

Example 3.39. In Zg, 5 +3 =2 and 4 -

Example 3.40. In Zg, (5+7)-(6+5)=12-11=4-3=12=4.

Example 3.41. Find 363 in Z;. Since
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31 =3, 32 =2,
we have 363 = 360 .33 = §.

Example 3.42. For every integer k, 6 divides k3 + 5k. In fact, by the division algorithm, for each
k € Z there exists a unique pair (¢, r) such that k = 6¢ + r for some 0 < r < 5. Therefore, in Zg we

have

K3 +5k=(6g+7)3+56g+r)=r+5 r=r3+(-1)-r=r3—7r.

It is clear that then k3 + 5k =0since 03 —0=13—-1=23—-2=33-3=43 -4 =53 — 5,



Theorem 3.43. Let m be a positive composite integer. Then there exists non-zero equivalence classes

T and y in Ly, such that T -y = 0.

Proof. Since m is a positive composite integer, m = x -y for some x,y € N, 1 < x,y < m. Since

1 <axz,y <m,,y # 0. Therefore, in Z,, 0 = m = z - ¥ which concludes the theorem. o
Theorem 3.44. Let p be a prime. If T -y =0 in Z,, then either T =0 ory = 0.

Proof. Let T,y € Z, and T -y = 0. Then z -y = 0 (mod p). Therefore, p divides z - y. Since p is
prime, p|z or ply which implies that z = 0 or y = 0. D

Theorem 3.45 (Cancellation Law for Z,). Let p be a prime. If xy = xz (mod p) and x # 0 (mod
p), then y = z (mod p).

Proof. If xy = xz (mod p, then x(y — 2) = 0 (mod p). By the previous theorem Z =0 or y — z = 0.
Since x # 0 (mod p), we must have y = z; thus y = z (mod p). o



4 Functions

4.1 Functions as Relations

Definition 4.1. Let A and B be sets. A function f : A — B consists of two sets A and B together
with a “rule” that assigns to each x € A a special element of B denoted by f(z). One writes x — f(z)
to denote that x is mapped to the element f(x). A is called the domain ( Z &3¢ ) of f, and B is

called the target or co-domain of f. The range (&% ) of f or the image of f, is the subset of
B defined by f(A) = {f(z) |z € A}.

Each function is associated with a collection of ordered pairs {(z, f(z)) |z € A} = A x B. Since
a collection of ordered pairs is a relation, we can say that a function is a relation from one set to
another. However, not every relation can serve as a function. The relation R = {(1,5),(2,7), (1,8)}
cannot describe a function since two numbers 5 and 9 are assigned to 1. Therefore, a function must

be a relation with additional special properties and we have the following

Definition 4.2 (Alternative Definition of Functions). A function (or mapping) from A to B is a
relation f from A to B such that

(i) the domain of f is A; that is, (Vo € A)(Jy € B)((x,y) € f ), and
(ii) if (z,y) € f and (z,2) € f, then y = 2.

We write f : A — B, and this is read “f is a function from A to B” or “f maps A to B”. The set B
is called the co-domain of f. In the case where B = A, we say f is a function on A.
When (z,y) € f, we write y = f(z) instead of xfy. We say that y is the émage of f at x (or

value of f at z) and that x is a pre-image of y.
Remark 4.3. A function has only one domain and one range but many possible co-domains.

Remark 4.4. A function on R is usually called a real-valued function or simply real function. The
domain of a real function is usually understood to be the largest possible subset of R on which the

function takes values.

Definition 4.5. A function x with domain N is called an infinite sequence, or simply a sequence.
The image of the natural number n is usually written as z,, instead of x(n) and is called the n-th

term of the sequence.
Definition 4.6. Let A, B be sets, and A € B.

1. The the identity function/map on A is the function 4 : A — A given by I4(z) = x for all
x € A

2. The inclusion function/map from A to B is the function ¢ : A — B given by «(x) = z for
all z € A.



3. The characteristic/indicator function of A (defined on B) is the map 14 : B — R given

by
1a(z) = 1 ifxeA,
ATV 0 ifreBA.
4. The greatest integer function on R is the function [| : R — Z given by

[z] = the largest integer which is not greater than x .

The function [] is also called the floor function or the Gauss function.

5. Let R be an equivalence relation on A. The canonical map for the equivalence relation R is

the map from A to A/R which maps x € A to Z, the equivalence class of  modulo R.
Theorem 4.7. Two functions f and g are equal if and only if

(i) Dom(f) = Dom(g), and

(ii) for all z € Dom(f), f(x) = g(x).

Example 4.8. The identity map of A and the inclusion map from A to B are identical functions.
Example 4.9. f(x) = T and g(x) = 1 are different functions since they have different domains.
x

Remark 4.10. When a rule of correspondence assigns more than one values to an object in the
domain, we say “the function is not well-defined”, meaning that it is not really a function. A proof
that a function is well-defined is nothing more than a proof that the relation defined by a given rule

is single valued.

Example 4.11. Let ¥ denote the equivalence class of  modulo the congruence relation modulo 4 and
y denote the equivalence class of y modulo the congruence relation modulo 10. Define f(z) = 2.
Then this “function” is not really a function since 0 = 4 but 2-0 = 0 while 2-4 = 8 # 0. In other

words, the way f assigns value to T is not well-defined.

Example 4.12. Let * denote the equivalence class of £ modulo the congruence relation modulo 8
and 7 denote the equivalence class of y modulo the congruence relation modulo 4. The function
f : Zg — 74 given by f(x) = 7 + 2 is well-defined. To see this, suppose that * = z in Zg. Then
8 divides x — z which implies that 4 divides x — z; thus 4 divides (x + 2) — (2 + 2). Therefore,
z+2=2z+2 (mod 4) or equivalently, = + 2 = z + 2. So f is well-defined.

4.2 Constructions of Functions

Definition 4.13. Let f : A - B and g : B — C be functions. The ¢nverse of f is the relation
from B to A:

f_lz{(y,x)eBxA‘y:f(x)}:{(y,x)eBxA|(x,y)ef}.



When f~! describes a function, f~! is called the inverse function/map of f.

The composite of f and g is the relation from A to C:
go f={(z,z) € Ax C|there exists (a unique) y € B such that (z,y) € f and (y, 2) € g} .

Remark 4.14. Using the notation in Definition @, if (z,z) € go f, then z = (go f)(z). On the
other hand, if (x,z) € g o f, there exists (a unique) y € B such that (x,y) € f and (y,2) € g. Then

y = f(z) and z = g(y). Therefore, we also have z = g(f(z)); thus (go f)(x) = g(f(z)).

Theorem 4.15. Let A, B and C be sets, and f: A — B and g : B — C be functions. Then go f is
a function from A to C, and Dom(g o f) = A.

Proof. By the definition of composition of relations, g o f is a relation from A to C.

1. First, we show that Dom(g o f) = A. Clearly Dom(go f) € A, so it suffices to show that
A <€ Dom(go f). Let x € A. Since f : A — B is a function, there exists y € B such that
(x,y) € f. Since g : B — C is a function, there exists z € C' such that (y, z) € g. This shows
that for every x € A, there exists z € C' such that (x,z) € go f; thus Dom(go f) = A.

2. Next, we show that if (z, z1) € gof and (z, z5) € go f, then z; = 2. Suppose that (z,2;) € go f
and (x,z3) € g o f. Then there exists y;,y2 € B such that (z,y;) € f and (y;,21) € g, while
(x,y2) € f and (yq, 22) € g. Since f is a function, y; = yo; thus that g is a function implies that

Z1 = Z9. O

Theorem 4.16. Let A, B,C, D be sets, and f : A— B, g: B— C, h: C'— D be functions. Then
ho(gof)=(hog)of.

Proof. We note that both functions h o (g o f) and (h o g) o f have A as their domains, so by
Theorem @ it suffices to shows that for all z € A, (ho (go f))(z) = ((hog)o f)(x). Nevertheless,

(holgof))(@)=h((go fl(x)) = h(g(f(x))) = (hog)(f(z)) = ((hog)o f)(z). o
Similarly, Theorem @ can be applied to prove the following two theorems.
Theorem 4.17. Let f: A — B be a function. Then foly=f and Igo f = f.

Theorem 4.18. Let f : A — B be a function, and C = Rng(f). If f~': C — A is a function, then
flof=1I4and fof'=Ic.

Definition 4.19. Let f : A — B be a function, and D < A. The restriction of f to D, denoted
by f|p, is the function

f|D:{(x,y)’y:f(x) andxeD}.

If g and h are functions and g is a restriction of A, the h is called an extension of g.

Since functions now are treated as sets (of ordered pairs), we can talk about the unions and

intersections of functions.



Example 4.20. Let ' and G be functions

F={(1,2),(2,6),(3,-9),(5,7)},
G ={(1,8),(2,6),(4,8),(5,7),(8.3)} .
Then F nG = {(2,6),(5,7)} is a function with domain {2, 5} which is a proper subset of Dom(F) N
Dom(G) = {1, 2, 5}.
On the other hand, {(1, 2), (1, 8)} c F u G, thus F' U G cannot be a function.

It turns out that if f and g are functions, then f N g is always a function and f n g can be defined

as the restriction of either f and ¢g. To be more precise, we have the following

Theorem 4.21. Suppose that f and g are functions. Then f n g is a function with domain A =
{a: } fz) = g(x)}, and

fog="fla=gla.
Proof. Let (xz,y) € f ng. Then y = f(x) = g(x); thus

Dom(f n g) = {z| f(z) = g(x)} .

Write f = {(z, f(z)) |2 € Dom(f)} and g = {(z, g(z)) |z € Dom(g)}, and let A = {z| f(z) = g(z)}.
If (x,1),(z,y2) € f g, (x,11),(x,y2) € f which, by the fact that f is a function, implies that

y1 = yo. Therefore, f n g is a function. Moreover,

fog={(z,y)|IzeAy=flz)}

which implies that f n g = f|a. o

For f U g being a function, it is (sufficient and) necessary that if € Dom(f) n Dom(g), then
f(xz) = g(z). Moreover, if f U g is a function, then f = (f U ¢)|pom(s) and g = (f U 9)|pom(g)- In

particular, we have the following

Theorem 4.22. Let f and g be functions with Dom(f) = A and Dom(g) = B. If An B = (J, then
fugisa function with domain A v B. Moreover,

x) ifreA,

o~ {1 4224

Proof. Clearly Dom(f u g) = A u B. Suppose that (z,y1), (z,y2) € fug. If (x,y1) € f, then

xr € Dom(f); thus by the fact that A n B = ¢, we must have (z,y2) € f. Since f is a function,

y1 = f(z) = yo. Similarly, if (x,4;) € g, then (z,y2) € g which also implies that y; = g(z) = ys.

(4.1)

Therefore, f U g is a function and (@) is valid. o
Definition 4.23. Let f be a real-valued function defined on an interval I < R.
. . <
1. The function f is said to be WNETEASINg - ) it 2 < y implies that o) < f(y) for all
decreasing f(z) = f(y)
x,yel.
2. The function f is said to be st'm:ctly METEASING - Tif 2 < y implies that (z) < f(y)
strictly decreasing flz) > f(y)

for all z,y € I.



4.3 Functions that are Onto; One-to-One Functions
Definition 4.24. Let f : A — B be a function.
1. The function f is said to be surjective or onto B if Rng(f) = B. When f is surjective, f is

called a surjection, and we write f : A Ll

2

2. The function f is said to be injective or one-to-one if it holds that “f(z) = f(y) = = = y".

When f is injective, f is called a injection, and we write f : A = B
3. The function f is called a bijection if it is both injective and surjective. When f is a bijection,

. 1-1
we write f: A—>B.
onto

Remark 4.25. 1. It is always true that Rng(f) < B; thus f : A — B is onto if and only if
B < Rng(f). In other words, f : A — B is onto if and only if every b € B has a pre-image.
Therefore, to prove that f : A — B is onto B, it is sufficient to show that for every b € B there
exists a € A such that f(a) = b.

2. The direct proof of that f : A — B is injective is to verify the property that “f(z) = f(y) =
x =1vy”. A proof of the injectivity of f by contraposition assumes that x # y and one needs to
show that f(z) # f(y).

Theorem 4.26. (a) If f: A— B is onto B and g : B — C is onto C, then go f is onto C.
(b) If f: A — B is one-to-one and g : B — C' is one-to-one, then g o f is one-to-one.

Proof. 1. Let ¢ € C. By the surjectivity of g, there exists b € B such that g(b) = ¢. The surjectivity
of f then implies the existence of a € A such that f(a) = b. Therefore, (g o f)(a) = g(f(a)) =
g(b) = ¢ which concludes (a).

2. Assume that (go f)(x) =(go f)(y). Then g(f(x)) = g(f(y)); thus by the injectivity of g,
f(z) = f(y). Therefore, the injectivity of f implies that x = y which concludes (b). D

By Theorem , we can easily conclude the following
Theorem 4.27. If f: A— B, g: B — C are bijections, then go f : A — C is a bijection.
Theorem 4.28. Let f: A— B and g : B — C be functions.
(a) If go f is onto C, then g is onto C.
(b) If go f is one-to-one, then f is one-to-one.

Proof. (a) Let c € C. Since go f is onto C, there exists a € A such that (go f)(a) = c. Let b = f(a).
Then g(b) = g(f(@)) = (g0 /)(a) =c.

(b) Suppose that f(z) = f(y). Then (go f)(x) = g(f(x)) = g(f(y)) = (gof)(y), and the injectivity
of g o f implies that z = y. O



Remark 4.29. In part (a) of Theorem , we cannot conclude that f is also onto B since there
might be a proper subset B < B such that f:A— E, g: B — C and go fis onto C. For example,
Let A= B =R, C =R"u{0}, and f(z) = g(z) = 2%. Then clearly f is not onto B but go f is
onto C.

In part (b) of Theorem , we cannot conclue that ¢ is one-to-one since it might happen that
g is one-to-one on Rng(f) < B but ¢ is not one-to-one on B. For example, let A = C' = R* U {0},
B =R, and f(x) = 22, g(x) = log(1 + |z|). Then clearly g is not one-to-one, but g o f is one-to-one.

Theorem 4.30. If f : A — B is one-to-one, then every restriction of f is one-to-one.

Theorem 4.31. Let f : A — C and g : B — D be functions. Suppose that A and B are disjoint

sets.
(a) If f is onto C and g is onto D, then fug: Au B — C u D is onto C u D.

(b) If f is one-to-one, g is one-to-one, and C and D are disjoint, then f ug: AuB — Cu D is

one-to-one.
Proof. We note that Theorem implies that f Ug: Au B — C u D is a function.

(a) Let ye C U D. Then ye C or y e D. W.L.O.G., we can assume that y € C. Since f: A — C
is onto C, there exists € A such that (z,y) € f. By Theorem , (fug)z) = f(z) =yv.
Therefore, f U g is onto C'u D.

(b) Suppose that (x1,y), (z2,y) € fug < (A x C)u (B x D). Then (z1,y) € f or (z1,y) € g.
W.L.O.G., we can assume that (x1,y) € f. Since f € A x C' and g € B x D, by the fact that

C' n D = & we must have (z2,y) € f for otherwise y € C' n D, a contradiction.

Now, since (x1,9), (z2,y) € f, the injectivity of f then implies that x; = x. D

4.4 Inverse Functions

We recall that the inverse of a function f : A — B is the relation

yf v e afye (zy)e fey=fla).

This relation is a function, called the inverse function of f, if the relation itself is a function with

certain domain.

Definition 4.32. A function f : A — B is said to be an one-to-one correspondence if f is a

bijection.
Theorem 4.33. Let f: A — B be a function.
(a) f~1 is a function from Rng(f) to A if and only if f is one-to-one.

(b) If f~' is a function, then f~' is one-to-one.



Proof. (a) “="1f (z1,y), (z2,y) € f, then (y,x1), (y,z2) € f~'. Since f~! is a function, we must

have x; = x5. Therefore, f is one-to-one.

“<"If (y,1), (y,x2) € 71, then (x1,9), (x2,y) € f, and the injectivity of f implies that

1 = x9. Therefore, Theorem @ implies that f~! is a function with domain Rng(f).

(b) Suppose that f~! is a function, and (y;,x), (yo,x) € f~1. Then (z,y1), (z,y2) € f which, by
the fact that f is a function, implies that y; = y,. Therefore, f~! is one-to-one. D

Corollary 4.34. The inverse of a one-to-one correspondence is a one-to-one correspondence.
Theorem 4.35. Let f: A— B, g: B — A be functions. Then
(a) g= f"Yifand only if go f = I and fog=Ip (if and only if f = g~ ').
(b) If f is surjective, and go f = I, then g = f~L.
(c) If f is injective, and f o g = Ig, then g = f~1.
Proof. We first prove the following two claims:
(1) If go f = I4, then f~' c g. (2) If fog=1Ip, then g < f~L.
To see (1), let (y,z) € f~! be given. Then (x,y) € f or y = f(z). Since (go f) = I4, we must have

9(y) = g(f(x)) = (9o f)(x) = la(zx) ==

or equivalently, (y, ) € g. Therefore, f~! < g¢.
To see (2), let (y,z) € g be given. Then x = g(y); thus the fact that (f o g) = I implies that

flx)=f(9(y)) = (fog)y) =Ip(y) =y

or equivalently, (z,y) € f. Therefore, (y,z) € f~1; thus g < f~1.

(a) “=" This direction is a direct consequence of Theorem .

“<" This direction is a direct consequence of the claims above.

(b) Suppose that f : A — B is surjective and g o f = I4. Then claim (1) implies that f~ < g;
thus it suffices to show that g = f~. Let (y,z) € g. Then by the surjectivity of f there exists
r1 € A such that y = f(x;) or equivalently, (y,7;) € f~!. On the other hand,

z=g(y) = g(f(z1)) = (go [)(z1) = Laz1) = 21.
Therefore, g < f.

(c) Now suppose that f: A — B is injective and f og = Ig. Then claim (2) implies that g = f~};

thus it suffices to show that f~' = g. Let (y,z) € f~! or equivalently, (z,y) € f or y = f(x).
By the fact that fog = Ig, we have f(g(y)) = y; thus the injectivity of f implies that g(y) = x
or (y,x) € g. Therefore, f~! = g which completes the proof. D



Corollary 4.36. If f : A — B is a one-to-one correspondence, and g : B — A be a function. Then
g=f"Yifand only ifgo f =14 or fog=Ig.

Example 4.37. Let A=R and B = {z |z > 0}. Define f: A—> Bby f(z) =2%>and g: B — A by
9(y) = \/y. Then fog = Ip but g is not inverse function of f since (go f)(z) = |z| for all z € A.

Definition 4.38. Let A be a non-empty set. A permutation of A is a one-to-one correspondence
from A onto A.

Theorem 4.39. Let A be a non-empty set. Then
(a) the identity map 14 is a permutation of A.
(b) the composite of permutations of A is a permutation of A.
(c) the inverse of a permutation of A is a permutation of A.
(d) if f is a permutation of A, then foly=1I40f=Ff.
(e) if f is a permutation of A, then fo f~1 = flof=1,.

(f) if f and g are permutations of A, then (go f)™' = f~1og™!.

4.5 Set Images

Definition 4.40. Let f : A — B be a function, and X € A, Y < B. The image of X (under f) or
image set of X, denoted by f(X), is the set

f(X)={yeB|y=f(z) forsome z € X} = {f(z)|z e X},
and the pre-image of Y (under f) or the inverse image of Y, denoted by f~(Y), is the set
JHY)={zecA|f(x)eY}.
Remark 4.41. Here are some facts about images of sets that follow from the definitions:
(a) If a € D, then f(a) € f(D).
(b) If a e f~Y(FE), then f(a) € E.
(c) If f(a) € E, then a € f7'(E).
(d) If f(a) € f(D) and f is one-to-one, then a € D.

Theorem 4.42. Let f : A — B be a function. Suppose that C, D are subsets of A, and E, F are
subsets of B. Then

(a) f(CnD)c f(C)n f(D). In particular, if C < D, then f(C) < f(D).



(b) f(Cu D)= [f(C) v f(D).

(c) fHENF)=fYE)n fNF). Inparticular, if E < F, then f~(E) < f~\(F).
(d) fFHEVF) = [THE) v f7H(F).

(e) €< [THf(C)).

() fF(FHE) < E.

Proof. (a) Let y € f(C n D). Then there exists € C'n D such that y = f(z). Therefore, y € f(C)
and y € f(D); thus y € f(C) n f(D).

(b) Let y € B be given. Then

ye f(CuD) < (erCuD)(y:f(x)) @(erC)(y:f(x)) v (HmeD)(y:f(x))
< (ye f(O) v (ye f(D)) & ye f(C)u f(D).

(c) Let z € A be given. Then

zefHEnF)s flx)e EnF < (f(zx)e E) A (f(z)eF)
s (zefUE) A(ze fHU(F) s ze f[TYE)n fTI(F).

(d) Let z € A be given. Then

zef{EUF)s flz)e EOF < (f(zx)e E) v (f(z) e F)
s (zefUE)) v (ze fU(F) sze fYE)U f(F).

(e) Let x € C. Then f(x) € f(C); thus z € f(f~1(C)). Therefore, C = f~1(f(C)).

(f) Suppose that y € f(f~'(E)). Then there exists x € f~'(E) such that f(z) = y. Since
r € fY(FE), there exists z € F such that f(z) = 2. Then y = z which implies that y € F.
Therefore, f(f~'(E)) € E. o

Remark 4.43. 1. In part (a) of Theorem 1.42, it is possible that f(C' n D) < f(C) n f(D). For
example, f(r) = 2% C = (—,0) and D = (0,0). Then C'n D = ¢ which implies that
f(C n D) =&; however, f(C) = f(D) = (0,00).

2. In part (e) of Theorem 1.4, it is possible that C < 7Y f(C)). For example, if f(z) = 2? and
C' = 10,1], then f71(f(C)) = f7([0,1]) = [-1,1] 2 [0, 1],

3. In part (f) of Theorem 1.42, it is possible that f(f~YE)) ¢ E. For example, if f(z) = 2% and
E= [_17 1]7 then f(f_l(E)) = f([oa 1]) = [07 1] & [_17 1]



5 Cardinality

5.1 Equivalent Sets; Finite Sets

Definition 5.1. Two sets A and B are equivalent if there exists a one-to-one function from A onto
B. The sets are also said to be in one-to-one correspondence, and we write A ~ B.

If A and B are not equivalent, we write A % B.
Example 5.2. The set of even integers is equivalent to the set of odd integers.

Example 5.3. For a,b,¢,d € R, with a < b and ¢ < d, the open intervals (a,b) and (c,d) are
equivalent. Therefore, any two open intervals are equivalent, even when the intervals have different
length.

Example 5.4. Let .# be the set of all binary sequences; that is, the set of all functions from
N — {0,1}. Then .# ~ Z(N), the power set of N. To see this, we define ¢ : .# — Z(N) by
¢(r) = {k e N|zy =1} for all z € Z. Then ¢ is well-defined and ¢ : F——P(N).

onto

Theorem 5.5. Fquivalence of sets is an equivalence relation on the class of all sets.
Proof. 1. Reflexivity: for all sets A, the identity map I4 is a one-to-one correspondence on A.

2. Symmetry: Suppose that A ~ B; that is, there exists a one-to-one correspondence ¢ from A
to B. Then Theorem ¢! is a one-to-one correspondence from B to A; thus B ~ A.

3. Transitivity: Suppose that A ~ B and B ~ (. Then there exist one-to-one correspondences
o AL B and (% Bl;tl»C. By Theorem , we conclude that Yo¢: A — C is an

onto
one-to-one correspondence; thus A ~ C. =

Lemma 5.6. Suppose that A, B,C' and D are sets with A~ C and B~ D.
(a) If A and B are disjoint and C and D are disjoint, then A v B~ C u D.
(b) Ax B~ C x D.

Proof. Suppose that ¢ : A%C and 9 : B%D.

(a) Then Theorem implies that ¢ U : Au B — C U D is a one-to-one correspondence.

(b) Let f: Ax B— C x D be given by f(a,b) = (¢(a),(b)). Then f is a one-to-one correspon-
dence from A x B to C' x D. o

Definition 5.7. For each natural number k, let Ny = {1,2,--- | k}. A set S is finite if S = J or
S ~ Ni for some k € N. A set S is infinite if S is not a finite set.

Definition 5.8. Let S be a finite set. If S = ¢, then S has cardinal number 0 (or cardinality
0), and we write #5S = 0. If S ~ N for some natural number k, then S has cardinal number k

(or cardinality k), and we write #S = k.



Remark 5.9. 1. In the definition above, we have to make sure that Ny # N; if £ # j (otherwise the
cardinality is not well-defined). Suppose that ¢ : Ny — N; is a one-to-one correspondence. By
Theorem @ we can assume that k < j. If k < j, then ¢(Ny) = {¢(1),¢(2),---,¢(k)} # N;
since the number of elements in ¢(Nj,) and N; are different. In other words, if & < j, ¢ : Ny — N;

cannot be surjective. This implies that N, ~ N; if and only if k = j.
2. The cardinality of a set S can also be denoted by n(S), S, card(S) as well.
Theorem 5.10. If A is finite and B ~ A, then B is finite.

Lemma 5.11. If S is a finite set with cardinality k and x is any object not in S, then S u {x} is
finite and has cardinality k + 1.

Lemma 5.12. For every k € N, every subset of Ny is finite.
Proof. We prove by induction. Let S = {k eN ‘ the statement “every subset of N, is finite” holds}.

1. There are only two subsets of N, namely ¢ and N;. Since ¥ and N; are both finite, we have
l1es.

2. Suppose that k € S. Then every subset of Ny, is finite. Since Ny ; = N u {k+ 1}, every subset
of Ni1 is either a subset of N, or the union of a subset of Ny and {k + 1}. By the fact that
k € S, we conclude from Lemma that every subset of N, is finite.

Therefore, PMI implies that S = N. =
Theorem 5.13. FEvery subset of a finite set is finite.

Theorem 5.14. (a) If A and B are disjoint finite sets, then A v B is finite, and #(A v B) =
H#A+ #B.

(b) If A and B are finite sets, then A U B is finite, and #(A v B) = #A+ #B — #(A n B).
(c) If Ay, Ay, -+ | A, are finite sets, then | ) Ay is finite.
k=1

Proof. (a) W.L.O.G., we assume that A ~ Ny and B ~ N, for some k,¢ € N. Let H = {k+ 1,k +
2,---,k+¢}. Then Ny ~ H since ¢(z) = k + x is a one-to-one correspondence from N, —
{k+1,k+2,--- ,k+(}. By part (a) of Lemma @, we conclude that Au B ~ N, u H = Ny y;
thus #(A U B) = #A + #B.

(b) Note that A U B is the disjoint union of A and B\ A, where B\A is a subset of a finite set B
which makes B\ A a finite set. Therefore, A U B is finite.

To see #(A U B) = #A + #B — #(A n B), using (a) it suffices to show that #(B\A) =
#B — #(A n B). Nevertheless, note that B = (B\A) u (A n B) in which the union is in fact

a disjoint union; thus (a) implies that

#B = #(B\A) + #(A n B) or equivalently, #(B\A)=#B — #(An B).



(c) Let Ay, Ay, --- be finite sets, and S = {n € N‘ U Ay is ﬁnite}. Then 1 €S by assumption.
k=1

Suppose that n € S. Then n+ 1 € S because of (b). PMI then implies that S = N. D
Lemma 5.15. Let k = 2 be a natural number. For x € Ny, Ni\{z} ~ Ny_;.

Theorem 5.16 (Pigeonhole Principle). Let n,r € N and f : N,, —» N,. be a function. If n > r, then

f is not injective.
Corollary 5.17. If #A =n, #B =r and r < n, then there is no one-to-one function from A to B.

Corollary 5.18. If A is finite, then A is not equivalent to any of its proper subsets.

5.2 Infinite Sets

Recall that a set A is infinite if A is not finite. By Corollary , if a set is equivalent to one of its
proper subset, then that set cannot be finite. Therefore, N is not finite since there is a one-to-one
correspondence from N to the set of even numbers.

The set of natural numbers N is a set with infinite cardinality. The standard symbol for the
cardinality of N is X. There are two kinds of infinite sets, denumerable sets and uncountable sets.

We start from the denumerable sets which is defined in the following

Definition 5.19. A set S is said to be denumerable if S ~ N. For a denumerable set S, we say S

has cardinal number X, (or cardinality Rg) and write #5 = Ny.
Example 5.20. The set of even numbers and the set of odd numbers are denumerable.
Example 5.21. The set {p,q,7} U {n € N|n # 5} is denumerable.

Theorem 5.22. The set Z is denumerable.

T . .
B if x is even,
1—=z

5 if z is odd.

Proof. Consider the function f: N — Z given by f(z) =

Theorem 5.23. (a) The set N x N is denumerable.
(b) If A and B are denumerable sets, then A x B is denumerable.

Proof. (a) Consider the function F' : N x N — N defined by F(m,n) = 2™ '(2n — 1). Then
F': N x N — N is bijective.

(b) If A and B are denumerable sets, then A ~ N and B ~ N. By (b) of Lemma @, we find that

Ax B~ N xN; thus A x B ~ N since ~ is an equivalence relation. =
Uncountable sets are understood when the concept of countability is known.

Definition 5.24. A set S is said to be countable if S is finite or denumerable. We say S is

uncountable if S is not countable.



Theorem 5.25. The open interval (0,1) is uncountable.

Proof. Assume the contrary that there exists f : N — (0,1) which is one-to-one and onto. Write

f(k) in decimal expansion (- i& =& ¥ ); that is,

f(l) — O.dlldgldgl e
f(2) == 0.d12d22d32 tee

f(k?) - O.dlkdgkdgk e

Here we note that repeated 9’s are chosen by preference over terminating decimals; that is, for
example, we write i =0.249999 - - - instead of % = 0.250000 - - -.
Let x € (0,1) be such that x = 0.dydy - - -, where

5 if dg #5,
dy = .

(- B o BT % b 8 f(k) v BT % k 872 %) . Then z # f(k) for all
k € N, a contradiction; thus (0, 1) is uncountable. o

Definition 5.26. A set S has cardinal number ¢ (or cardinality c) if S is equivalent to (0,1). We

write #5 = ¢, which stands for continuum.
Theorem 5.27. (a) Even open interval (a,b) is uncountable and has cardinality c.
(b) The set R of all real numbers is uncountable and has cardinality c.

Proof. (a) The function f (z) = a+ (b— a)x maps from (0, 1) to (a,b) and is a one-to-one correspon-

dence.

(b) Using (a), (0,1) ~ (—g, g) Moreover, the function f(x) = tanz maps from (—g, g) to R
and is a one-to-one correspondence; thus (— g, g) ~ R. Since = is an equivalence relation,

(0,1) ~ R. o
Example 5.28. The circle with the north pole removed is equivalent to the real line.

Example 5.29. The set A = (0,2) u [5,6) has cardinality c since the function f : (0,1) — A given

by
4x if0<a:<%,

fz) =

2 + 4 if%<x<1

is a one-to-one correspondence from (0,1) to A.



5.3 Countable Sets

In this section we focus on the countability of sets.

Proposition 5.30. Let S be a non-empty set. The following three statements are equivalent:
(a) S is countable;
(b) there ezists a surjection f: N — S;

(c) there ezists an injection f: S — N.

Proof. “(a) = (b)” First suppose that S = {xy,--- ,x,} is finite. Define f : N — S by

f(k):{xk if k<n,

z, ifk>=n.

Then f: N — S is a surjection. Now suppose that S is denumerable. Then by definition of

countability, there exists f : Nl—_tlng.
onto

“(a) <= (b)” W.L.O.G. we assume that S is an infinite set. Let k; = 1. Since #(S) = oo,

Sy = S\{f(k1)} # ; thus Ny = f71(S)) is a non-empty subset of N. By the well-ordered
principle (WOP) of N, N; has a smallest element denoted by ks. Since #(S5) = o0, Sy =
S\{f(k1), f(ka)} # &J; thus Ny = f71(S,) is a non-empty subset of N and possesses a smallest

element denoted by k3. We continue this process and obtain a set {ki, ks, -} S N, where
ki < kg < ---, and k; is the smallest element of N;_y = f~(S\{f(k1), f(k2), -+, f(kj_1)}).

Claim: f : {ky, ks, -} — S is one-to-one and onto.

Proof of claim: The injectivity of f is easy to see since f(k;) ¢ {f(k:l), flka), - ,f(kj_l)} for
all j = 2. For surjectivity, assume that there is s € S such that s ¢ f({ki,ko,---}). Since
f:N — Sis onto, f~!({s}) is a non-empty subset of N; thus possesses a smallest element k.
Since s ¢ f({k1, ka2, --}), there exists £ € N such that ky < k < ksy1. As a consequence, we find
k € Ny such that k& < kg1 which contradicts to the fact that k,,; is the smallest element of V,.

Define g : N — {ky,ko,---} by g(j) = k;. Then g : N — {ky, ko, ---} is one-to-one and onto;
thush:gof:Ni»S.

onto

“(a) = (¢)” If S = {xy, -+ ,x,} is finite, we simply let f : S — N be f(z,) = n. Then f is clearly

an injection. If S is denumerable, by definition there exists g : N1—j>S which implies that

f=g¢1':S5 — Nis an injection.

“(a) <= (¢)” Let f : S — N be an injection. If f is also surjective, then f : S—=LN which implies

onto

that S is denumerable. Now suppose that f(S) & N. Since S is non-empty, there exists s € S.
Let g : N — S be defined by
f7Hn) ifne f(9),
g(n) = .
s ifné¢ f(9).
Then clearly g : N — S is surjective; thus the equivalence between (a) and (b) implies that S

is countable. o



Example 5.31. We have seen that the set N x N is countable. Now consider the map f : NxN — N
defined by f((m,n)) = 2™3"™. This map is not a bijection; however, it is an injection; thus Proposition
implies that N x N is countable.

Example 5.32. The set Q" of positive rational numbers is denumerable. Since Q% is infinite, it
suffice to check the countability of Q. Consider the map f : N*> — QT defined by f(m,n) = %
Then f is onto Q*; thus Proposition implies that QT is countable.

Theorem 5.33. Any non-empty subset of a countable set is countable.

Proof. Let S be a countable set, and A be a non-empty subset of S. Since S is countable, by
Proposition there exists a surjection f : N — S. On the other hand, since A is a non-empty

subset of S, there exists a € A. Define
(z) = v ifxeA,
=V a ifag A,
Then h =go f: N — A is a surjection, and Proposition shows that A is countable. =

Corollary 5.34. A set A is countable if and only if A is equivalent to some subset of N.

Theorem 5.35. The union of denumerable denumerable sets is denumerable ( & 3 ¥ ¥ & 5 7
BB nm  E & 5V #iken) . In other words, if F is a denumerable collection of denumerable sets,

then | J A is denumerable.
AeF

Proof. Let % = {Ai | i € N, A; is denumerable} be an indexed family of denumerable sets, and define
A = 6 A;. Since A; is denumerable, A; = {x;1, %, %3, - }. Then A = {xij i,j € N}. Let
f:N >Z<:I1\I — A be defined by f((i,j)) = x;;. Then f: Nx N — A is a surjection. Moreover, Theorem
implies that there exists a bijection g : N - N x N; thus h = fog : N — A is a surjection which,
by Proposition , implies that A is countable. Since A; € A, A is infinite; thus A is denumerable.

]

Corollary 5.36. The union of countable countable sets is countable (¥ #c i ¥ B & 0I5 & £ 7 #c

Proof. By adding empty sets into the family or adding N into a finite set if necessary, we find that
the union of countable countable sets is a subset of the union of denumerable denumerable sets. By

Theorem , we find that the union of countable countable sets is countable. =
Corollary 5.37. Q is countable.

Proof. Let Q" and Q~ denote the collection of positive and negative rational numbers, respectively.
By Example , the set QT is countable. Since QT ~ Q= (between them there exists a one-
to-one correspondence f(z) = —z), Q is also countable. Therefore, Theorem implies that
Q=Q" uQ U {0} is countable. o



Corollary 5.38. (a) If .F is a finite pairwise disjoint family of denumerable sets, then |J A is
AeZF
countable.

(b) If A and B are countable sets, then A u B is countable.

(¢c) If F is a finite collection of countable sets, then ] A is countable.
AeF

(d) If F is a denumerable family of countable sets, then | ) A is countable.
AeF



7 Concepts of Analysis

7.1 Convergent Sequences

Recall that a sequence is a function with domain N. For n € N, the image of n is called the n-th
term of the sequence and is written as x,,. In the following discussion, sequences always take value

in R. In other words, we only consider real sequences.

Definition 7.1. Let {z,}"; < R be a sequence. {z,}7_, is said to be convergent if there exists

L € R such that for every € > 0,
#{neN|z, ¢ (L—¢c,L+e)} <.
Such an L is called a limit of the sequence. In notation,
{zn}y_, = Ris convergent <« (3LeR)(Ve>0)(#{neN|z, ¢ (L—¢c L+e)} <on0).

If L is a limit of {x,}2, we say {z,}>_, converges to L and write x, — L as n — co. If {x,}2, is

not convergent, we say that {z,}> , diverges or is divergent.

-1\
Example 7.2. Let z,, = (n—i—)l' We show that {z,}°; converges to 0. By definition, we need to

show for every e > 0 the set A, = {n eN | Tn ¢ (—575)} is finite. Note that A, = {n € N] |z, | = 6};
thus

Therefore, #A, = [5 — 1 < oo which implies that {z,}> , converges to 0.

3+ (-1

5 diverges. To see this, we have to show

Example 7.3. The sequence {y,}°_; given by y,, =
that any real number L cannot be the limit of {y,}> .
1
Let L € R be given and € = 3 Then (L — ¢, L 4 €) at most contains one integer. Since y,, only

takes value 1 or 2 and #{n eNl|y, = 1} = #{n eNly, = 2} = o0, we find that
#{nel\l‘ynq_f (L—e,L+e)}=w
which implies {y,}* ; cannot converges to L.

Example 7.4. Recall that a permutation of a non-empty set A is a one-to-one correspondence from
A onto A. Let 7 : N — N be a permutation of N, and {z,})°; be a convergent sequence. Then

{xw(n)}le is also convergent since if L is the limit of {z,}>_, and & > 0,
#{neN|zmm ¢ (x—c,o+e)}=#{neN|z, ¢ (z—c,x+e)} <.

Proposition 7.5. Let {x,};" | € R be a sequence and L be a real number. Then {x,}r_, converges
to L if and only if for every e > 0, there exists N € N such that |z, — L| < € whenever n > N. In

notation,

{zp}ry convergesto L < (Ye>0)ANeN)(n=N=|z,—L|<e¢).



Proof. “=" Let € > 0 be given, and Ac = {n € N|x, ¢ (L —¢,L +¢)}. Since {z,};2, converges to
L, k= +#A. < oo. Suppose that ny < ny < --+ < ny belongs to A.. Let N = n; + 1. Then
NeNandif n > N, n¢ A, which implies that if n > N, x,, € (L — ¢, L + ) or equivalently,

|z, — L| <e whenever n>= N.

” Let € > 0 be given. Then for some N € N, if n > N, we have |z, — L| < € or equivalently, if
> N, z, € (L—¢,L+¢). This implies that

#{neN|z, ¢ (L—e,L+e)} <N <. o
Remark 7.6. A sequence {z,}*_; < R diverges if (and only if)
(VLeR)3e > 0)(#{neN|z, ¢ (L—¢,L+¢)} =)
which is equivalent to that
(VLeR)(3e>0)(VNeN)3n=N)(|lz,— L| =¢).

Example 7.7. Now we use the e-IN argument as the definition of the convergence of sequences to
re-establish the convergence of sequences in Example @, @ and @

s : (=" 1 . 1 1 .
Example - revisit: Let € > 0 be given, and z,, = nrl Let N = [g] + 1. Since [g] > . 1, if

1 1
> N we must have n > — — 1; thusif n > N, w1 < e. Therefore,
9
|z, —0| <e whenever n >N

which implies that {x,}>_, converges to 0.

Example - revisit: Let L € R be given. Choose ¢ = % For N € N, define

(N1 flyy— L] <e,
S\ N+2 iflyy Ll =e

Then n = N. Moreover, if |yy — L| < ¢, then |y, — L| = |yn —y~n| — |yn — L| > 1 —e = ¢, while
if [yy — L| = € then clearly |y, — L| = . Therefore,

(VLeR)Je>0)(VNeN)dn = N)(ly, — L| = ¢).

Example - revisit: Now suppose that {z,}_, is a convergent sequence with limit L, and ¢ > 0

be given. Then by the convergence of {x,}%_; to L, there exists N; € N such that if n > Ny, we
have |z, — L| < e. Define N = max {w~'(1),7(2),--- ,#*(N1)}. Then if n > N, 7(n) = N;
which implies that

|a:7r(n) — L’ < ¢ whenever n > N.

Therefore, {Zrn)},_; converges to L.



From the example above, we notice that proving the convergence using the e-N argument seems

more complicated; however, it is an necessary evil so we encourage the readers to major it.

Theorem 7.8. If {z,},_; € R is a sequence such that x,, — x and x,, — y as n — ©, then x = y.

(The uniqueness of the limit).

Proof. Assume the contrary that x # y. W.L.O.G. we may assume that x < y, and let ¢ = % > 0.
Then

#{neN|z, ¢ (z—c,x+e)} <o (7.1)
and

#{neN‘xnaﬁ(y—&,yan)} < .
Note that the latter implies that #{n € N|z, € (y — ¢,y + )} = o which contradicts to (@) since

(-ewte)nly—cyte) =g, .
Alternative proof using e-N definition. Assume the contrary that z # y. W.L.O.G. we may assume
that x < y, andletae:% >0 (r+e=y—e¢). Since x,, > r and x,, > y as n — 0,

(ElNleN)(n>N1:>|a:n—x]<8)

and
(ANyeN)(n= Ny = |z, —y| <¢).

Then if n > N = max{N;, Na}, we have both |z, — x| < ¢ and |z, —y| < e foralln > N. As a

consequence, x, < x + ¢ and z, > y — ¢ for all n > N, a contradiction. So z = y. D

Notation: Since the limit of a convergent sequence {z,}>°_; is unique, we use lim z,, to denote the
n—0o0
o0

limit of {x,}* ; when {z,}°_, is convergent.

Example 7.9. Prove that the sequence {x,}*_; given by x, = converges.

n?+1
Theorem 7.10. Suppose that {a,}> 2, {bp}, and {c,}°_, are sequences of real numbers such that

n:]_7

a, <b, <c, forallneN. If lim a, = lim ¢, = L, then lim b, = L.
n—0o0 n—00 n—0o0

Proof. Let € > 0 be given. Since lim a,, = L and lim b, = L, by definition

n—o0 n—o0

AN, eN)(n= Ny = |, — x| <e),

and
(AN eN)(n= Ny = |z, —y| <e).

Let N = max{Ny, No}. Then Ne Nandifn> N, L—¢<a, <¢, <b, <L +¢; thus lim ¢, = L.
n—o0
m]

Example 7.11. Let {z,})°_; be a sequence given by z,, = % Then lim sn;n
n—0o0

=0.

Definition 7.12. Let {z,}>, < R be a sequence.



1. {x,}y, is said to be bounded (§ J 1) if there exists M > 0 such that |z,| < M for all
n e N.

2. {z,}_ is said to be bounded from above (7 * J ) if there exists M € R, called an upper

bound of the sequence, such that x,, < M for all n € N.

3. {zn}_ is said to be bounded from below (F ™ J& ) if there exists m € R, called a lower

bound of the sequence, such that m < x,, for all n € N.
Proposition 7.13. A convergent sequence is bounded (#7|qzace 3 %) .
Proof. Let {z,}>_, be a convergent sequence with limit z. Then there exists N > 0 such that
rp€(x—12z+41) Vn > N.

Let M = max {|21], |22, ,|zn-1|, |z] + 1}. Then |z,| < M for all n € N. o
Theorem 7.14. Suppose that x, — x and y, — y as n — o, X is a constant. Then

1.z, +y, >ty asn — .

2. Tp Yo — T Y aS N — 0.

3. If yn,y #0, thenx—nﬁgasn—»oo.

Proof. 1. Let € > 0 be given. Since z,, — x and y,, — y as n — o0, there exist N1, Ny € N such that
|z, — x| < g for all n = Ny and |y, — x| < % whenever n = N,. Define N = max{Ny, Ny}.

Then N e Nand ifn> N,
[(@n £ yn) = (@£ Y)| < zn — 2|+ |y —y| <&;
thus x, £y, > x £y as n — o0.

2. Since z, — x and y, — y as n — o, by Proposition there exists M > 0 such that
|z,| < M and |y,| < M. Let € > 0 be given. Then
3
AN eN)(n= N = |z, —z| < m)’

and

e
(HNQGN)(n>N2=>|yn—y|<m).

Define N = max{Ny, No}. Then N € N, and if n > N,

e e
< M-y, — M |z, — M- — 4+ M — =¢.
Y —y| + M - |2, — 2] < of TM g =¢



1 1
3. It suffices to show that lim — = ; if Y,y # 0 (because of 2). Since lim y, = y, there exists
n—0oo

n—00 Yp
N; € N such that |y, —y| < ]y2\ whenever n > N;. Therefore, |y| — |y,| < ‘22/’ for all n > Ny
which further implies that |y,| > |‘g‘ for all n > Nj.

2
Let € > 0 be given. Since lim vy, = y, there exists Ny € N such that |y, — y| < 13/2\5 whenever
n—aoo

n = Ny. Define N = max{Ny, No}. Then N e Nand if n > N,
1 1 n — 212
‘_ Yo =yl _ 1yl _

- — | = —_— s —— =c
Un Y Ynlly] 2 yllyl

Definition 7.15. A sequence {y;}7, is called a subsequence of a sequence {m,},_, if there exists
a strictly increasing function f : N — N such that y; = z(;). In this case, we often write f(j) = n;

and y; = Tp,;.

In other words, a subsequence of a sequence is derived by deleting some elements without changing

the order of remaining elements.

Example 7.16. Let {z,}>_; < R be a sequence. Then {xs,}>_, and {xs,_1}>_; are subsequences of
{xn} . Moreover, {xq,}>_, is obtained by deleting all the odd terms of {z,}°; (without changing
the order), and {za,-1};_, is obtained by deleting all the even terms of {x,} >, (without changing
the order).

Theorem 7.17. A sequence {z,}°; < R converges if and only if every subsequence of {,}7,

converges (to the same limit).

Proof. Since {x,}*_; isself is a subsequence of {x,}*_,, it suffices to show the implication from LHS
to RHS.

Suppose that lim z,, = L. We claim that every subsequence {x,,}52, of {z,};_, also converges

n—0o0
to L. Let € > 0 be given. Since lim z,, = L, there exists N € N such that |z, — L| < ¢ whenever
n—ao0
n = N. Note that if j > N, we must have n; > N; thus if j > N, we must have ‘xnj — L| <e. =

7.2 Limits and Continuity of Real-Valued Functions

Definition 7.18. Let I < R be an interval, a € I, and f be a real-valued function defined on I — {a}.

We say that the limit of f at a exists if for every sequence {a,}_, < I satisfying

1. a, # aforallneN, 2. lim a, = a,
n—aoo

the sequence {b,}>_; given by b, = f (a,) converges. (- Sn#ictr a 'L G phodk Torg &1 7
PoiEF H_a fefeacd] o i B S E 1) S s 3R e et ;) Using the logic notation, the limit
of f at a exists if

(V{an}i, = I\{a}) (THm‘an =a = lim f(a,) exists).

1—00 n—0oo



Proposition 7.19. Let I < R be an interval, a € I, and f be a real-valued function defined on I\{a}.
If the limit of f at a exists, then there exists a unique L € R such that lim f(a,) = L for every
n—aoo

sequence {a,}>_; < I\{a} converging to a.

Proof. Suppose that contrary that there exist two sequences {a,}>_;, {b,}>_, < I\{a} and two num-
bers Li, Ly such that a,, — a,b, — a as n — o0 and

lim f(a,) =1Ly and lim f(b,) = Ls.

n—0o0 n—0o0

ant1 if mis odd,
Define a sequence {c,}>_; by ¢, = { 2 that is, {c,}2, = {a1, b1, as, by, as, bs, - - - }.

bx ifn is even;

Then ¢, — a as n — o; thus by the definition of the limit of functions, there exists L such that

lim f(c,) = L.

n—o0
Since {f(an)}r, and {f(b,)}o, are both subsequences of {f(c,)}"_;, Theorem implies that
L = L, = Lo, a contradiction. o

Notation: If the limit of f at a exists, by Proposition ,

(AL e R)(V {an}y, = I\{a})( hm a, =a= lim f(a,) =L).

n—0o0

This unique real number L is called the limit of f at a, and is denoted by lim f(z).

Tr—a

1
Loy
Example 7.20. Consider the function f : [0, 1] — R defined by f(z) = { smp HT# 0, Then f
0 ifz=0.

is not continuous at 0 since letting x,, = Py and y, = , we have x,, — 0 and y, — 0 as
nm

2nm + /2
n — o but f(z,) =0 while f(y,) =1 for all n e N.

Theorem 7.21. Suppose that I < R is an interval, a € I, and f,g are two functions defined on I,
except possibly at a, such that f(x) = g(x) for all x € I\{a}. If lim f(x) exists, then lim g(x) exists,
and lim f(x) = lim g(z).

Proof. Since lim f( ) exists, every sequence {x,} ; < I\{a} converging to Let {z,}>_, < I\{a} be

a sequence convergmg to a. Since hm f(x) exists, lim f(x,) = L for some L € R. By the fact that
—a n—aoo

f(z) = g(x) for z € I\{a}, hm g(wn) = L. o

Proposition 7.22. Let I < R be an interval, a € I, and f be a real-valued function defined on I\{a}.
Then lim f(x) = L if and only if

(Ve>0)30>0)[(0<|z—a|<d) A (zel)=|f(x)— Ll <e].

Proof. “=7" Assume the contrary that there exists ¢ > 0 such that for all § > 0, there exists
x5 € I\{a} with
0<|zs—al<d and |f(zs)—b]>¢



1
In particular, letting § = -, we can find {x,}{, < I\{a} such that

0< |z, —dq <% and |f(z,) —L|>¢.
Then x,, — a as n — o but f(x,) - L as n — o0, a contradiction.
“<" Let {x,}, < I\{a} be such that x, — a as n — o0, and € > 0 be given. By assumption,
30> 05 |f(z) — L| <e whenever 0 < |z —a| <dand x e [.
Since z,, — a as n — o0, there exists N > 0 such that |z,, —a| < 6 whenever n > N. Therefore,
|f(zn) — Ll <e Yn=N
which shows that nll_ri.lO flx,) = L. o

Definition 7.23. Let I < R be an interval, and a € I. A function f : I — R is said to be continuous

at a if lim f(x) = f(a). In other words, f : I — R is continuous at a if
(Ve>0)(36>0)[(lz —a] <) A (zel)=|f(z)— fla)| <e].
A function f : I — R is said to be continuous on [ if f is continuous at every point of I.

Remark 7.24. Almost identical proof of showing Proposition implies that “f is continuous at

a if and only if for every sequence {z,}°_; < I converging to a, one has lim f(z,) = f(a).” (- S#c
n—00

fra@daek Torg &1 9 feach] o sl 8 5l o) & acr | 3 e acE) £ (a) )

Lemma 7.25. Let I,J < R be intervals, and f : I - R, g : J — R be functions. If f(I) < J,
lim f(x) =be J, and g is continuous at b, then lim(go f)(z) = g(b).

Proof. Let {x,}> , < I\{a} such that z,, — a as n — co. Since lim f(z) = b, we have

r—a

lim f(z,)=5.

n—ao0
In other words, {f(:z:n)}:):l
Remark , lim g(f(z,)) = g(b). Therefore, for every sequence {z,}>_ , < I\{a} such that x,, — a
n—o0
as n — oo, one has lim (g o f)(z,) = ¢g(b). This implies that lim(g o f)(z) = g(b). o
n—0oo r—a

is a convergent sequence with limit b. By the continuity of g at b and

Alternative proof. Let € > 0 be given. Since g is continuous at b, there exists ¢ > 0 such that
l9(y) — g(b)| <& whenever |y—bl <oandye.J.
For such ¢ > 0, there exists 6 > 0 such that
|f(z) —b| <o whenever 0<|z—al<dandzel.
Therefore, if 0 < |z —a|] < J and z € I,
(g0 f)(x) = g(b)] = [g(f(x)) — g(b)] <

since we also have |f(z) — b| < o and f(z) € J. o



Remark 7.26. Suppose that lim f(z) = b. It is possible that if lin}) g(x) = ¢ but lim(g o f)(z) # c.
For example, let f(z) = b be a constant function, and g(z) be defined by

(2) = 0 ifz#b,
NEI=V 1 ife=b.

Then (go f)(z) =1, and glglgll(g of)(z)=1#0= ilg})g(:z;)

Theorem 7.27. Let I,J < R be intervals, and f : I - R, g:J — R be functions. If f(I) < J, f

is continuous at a € I, f(a) € J and g is continuous at f(a), then go f is continuous at a.

7.3 The Completeness Property

Definition 7.28. A set F is said to be a field (#8) if there are two operations + and - such that
l.e+yeF,z-ye Fifz,ye F. (F 1)
2. x+y=y+axforall x,ye F. (commutativity, 4v;* 7% $& )
3. (z+y)+z=x+4 (y+2) for all z,y, z € F. (associativity, 4vi* e & |2)

4. There exists 0 € F, called #vi* ¥ == % | such that x + 0 = x for all x € F. (the existence of

7€ero)

5. For every x € F, there exists y € F (usually y is denoted by —z and is called x e4cj% & < %)
such that z +y = 0. One writes v —y =z + (—y).

6. z-y=y-xforal z,yeF. (Fkiz )
7. (z-y)-z=x-(y-2) forall z,y,ze F. (Fiz % &%)

8. There exists 1 € F, called 3z ¥ =~ % such that -1 = z for all x € F. (the existence of
unity)

9. For every z € F, x # 0, there exists y € F (usually y is denoted by z~! and is called x &3k %
F %) such that z -y =1. One writes z -y =z -27' = 1.

10. x- (y+2) =z -y+x-zforall x,y,z € F. (distributive law, 4 fic &)
11. 0 # 1.

Definition 7.29. A partial order over a set P is a binary relation < which is reflexive, anti-

symmetric and transitive, in the sense that
1. x <z for all x € P (reflexivity).
2. r<yand y <z ==y (anti-symmetry).

3. z<yand y < z=r < z (transitivity).



A set with a partial order is called a partially ordered set.

Definition 7.30. Let (P, <) be a partially ordered set. Two elements x,y € P are said to be

comparable if either r < yory <«

Definition 7.31. A partial order under which every pair of elements is comparable is called a total

order or linear order.

Definition 7.32. An ordered field is a totally ordered field (F, +, -, <) satisfying that
1. If 2 <y, then z + z < y + z for all z € F (compatibility of < and +).
2. If 0 <z and 0 < g, then 0 < z - y (compatibility of < and ).

Example 7.33. (Q,+,, <) and (R, +, -, <) are ordered fields.

Definition 7.34. Let (F,+,, <) be an ordered field.

1. The relation > is defined by “x >y < y < 2"
2. The relation < is defined by “z <y < rx <y A x #y"

3. The relation > is defined by “z >y < y < x”.
Theorem 7.35. If a < b in an ordered field F, then there exists c € F such that a < c < b.

Definition 7.36. Let (F,+,-, <) be an ordered field, and & # A < F. A number M € F is called
an upper bound (+ %) for Aif x < M for all z € A, and a number m € F is called a lower bound
(T B ) for Aif = m for all z € A. If there is an upper bound for A, then A is said to be bounded
from above, while if there is a lower bound for A, then A is said to be bounded from below. A

number b € F is called a least upper bound (& - + %) if
1. bis an upper bound for A, and
2. if M is an upper bound for A, then M > b.

A number a is called a greatest lower bound (&~ 7 ) if

1. a is a lower bound for A, and

2. if m is a lower bound for A, then m < a.

— )
m A M

an lower bound for A an upper bound for A

Py >
>

If A is not bounded above, the least upper bound of A is set to be oo, while if A is not bounded
below, the greatest lower bound of A is set to be —oo. The least upper bound of A is also called the
supremum of A and is usually denoted by lubA or sup A, and “the” greatest lower bound of A is
also called the infimum of A, and is usually denoted by glbA or inf A. If A = ¢, then sup A = —o0,
inf A = o0.



Remark 7.37. Let (F,+,, <) be an ordered field.

1. If by,b, € F are least upper bounds for a set A < F, then b; = by. Therefore, sup A is a

well-defined concept. Similarly, inf A is a well-defined concept.
2. Since the sentence “x € @ = & < M7 is true for all M € F, we conclude that sup J = —oo.
Similarly, inf ¢J = co.
Example 7.38. In the ordered field R,
1. sup(0,3) = 3 and inf(0,3) = 0.
2. sup N does not exist, but inf(N) = 1.

3. Let A={27%|k e N}. Then infA =0 and sup A = %

4. Let B = {reQ|z? <2}. Then inf B = —+/2 and sup B = /2.
How about considering the supremum and infimum for the sets above in the ordered field Q?

Theorem 7.39. Let (F,+,-, <) be an ordered field, and A be a subset of F. Then s = sup A if and
only if

(i) Ve>0)(Vxe A)(x <s+e). (ii)) Ve >0) Tz e A)(z > s —¢).
Proof. “=" (i) is part of the definition of being a least upper bound.

(ii) If M is an upper bound of A, then we must have M > s; thus s — ¢ is not an upper bound

of A. Therefore, 3z e Asx > s —¢.

“<” First, we show that s is an upper bound for A. If not, there exists x € A such that s < z. Let

e =x— s> 0. Then we do not have (i) since z € A but r < s+¢.

Next we show that if M is an upper bound of A, then M > s. Assume the contrary. Then
3 M such that M is an upper bound of A but M < s. Let ¢ = s — M, then there is no

reES3r>8—¢c —— o

Definition 7.40 (Completeness). Let (F,+,, <) be an ordered field. F is said to be complete
(= # ) if every non-empty subset of F that has an upper bound in F has a supremum that is an
element of F. (£33 t e &g &)+ R )

Theorem 7.41. The field (R, +,-, <) is a complete ordered field.

Theorem 7.42 (Archimedean Principle for R). For every real number x, there is a natural number

n such that n > x.

Proof. Let x € R. If z < 1, then the choice n = 1 validates n > x. Suppose x > 1. Define
A= {n € N‘n < x} Then 1 € A and x is an upper bound for A. By the completeness of R,
s =sup A € R exists. Since s is the least upper bound for A, s — 1 is not an upper bound for A; thus
there exists m € A such that m > s—1or s <m+1. Then m+1 ¢ A which implies that m+1 < .

The choice n = m + 1 satisfies n > xz. o



Example 7.43. The set B = {z € Q| 2? < 2} is bounded above in the field Q but has no supremum
in Q. To see this, first we note that B is bounded above since 2 is an upper bound of B. Suppose

that s = sup B € QQ exists.
1. If s < v/2, then s — v/2 > 0. The Archimedean property of R implies that there exists K € N
such that K > 3—1\/5 > 0. Then v/2 < s — % which implies that s — % is an upper bound of
B. Therefore, s is not the least upper bound, a contradiction.
2. If s > +/2, then v/2 — s > 0. The Archimedean property of R implies that there exists M € N
such that M >

\/;_ ; > (0. Then s + % < 4/2 which shows that s + % € B. Therefore, s

. 1
cannot be an upper bound of B since s < s + I

Therefore, sup B = v/2 ¢ Q.

7.4 The Heine-Borel Theorem

Definition 7.44. Let a and ¢ be real numbers with 6 > 0. The d-neighborhood of a is the set
N(a,8) ={zeR||z—a| < d}.

Therefore, a sequence {x,}>_ , converges to a if for every ¢ > 0, there are only finite number of
n € N such that x, lies outside the e-neighborhood of a. We also note that if 0 < d; < do, then
N(CL, 51) - N(a, 52)

Definition 7.45. For a set A < R, a point z is said to be an interior point of A if there exists
d > 0 such that N'(a,d) < A.

Definition 7.46. A set A < R is said to be open if every point of A is an interior point of A. In
other words, A < R is open if for every x € A, there exists ¢ > 0 such that N (a,d) < A.

Example 7.47. The empty set ¢ and the universe R are open.
Theorem 7.48. Every interval (a,b) € R, where —o0 < a < b < 0, is an open set.

Proof. Let x € (a,b). W.L.O.G., we can assume that at least one a and b is finite. Define § =
min{z — a,b — x}. Then 0 < § < 0. Moreover, if y € N(x,0), we must have |y — z| < ¢; thus if

yeN(z,9),

y—a=y—xr+x—a>-0+r—a=>0 and b—y=b—cv+rx—-—y>b—x—6=0
which implies that NV (z, ) < (a,b). o
Theorem 7.49. Let % be a non-empty collection of open subsets of R. Then

(a) |J A is an open set.

AeF

(b) If F has finitely many open sets, then () A is an open set.

AeF



Proof. (a) Let z€ |J A. Then x € A for some A € .#. Since A is open, x is an interior point of A;

AeF
thus there exists 6 > 0 such that N'(x,0) € A. Then N(z,d) < |J A and we establish that
AeF
J A is open.

AeF

(b) Suppose that F = {Al,A2,-~ ,Ak} and A;’s are open for 1 < j < k. Let z € () A. Then
AeF

x € A; for all 1 < j < k. Since each A; is open, there exists §; > 0 such that N(xz,d;) < A;.
Define § = min{dy,---,dx}. Then 6 > 0 and N (z,0) € N(z,d;) € A; for all 1 <j <k. As

a
k

consequence, N'(z,0) < [ 4; = [) A. o

j=1 AeF

Definition 7.50. A set A is said to be closed if its complement A® = R\A is open.

Theorem 7.51. A subset A = R is closed if and only if every convergent sequence {x,}> , < A

converges to a limit in A.

Proof. (=) Let {z,}?, < A be a convergent sequence with limit z. If z ¢ A, then z € A", By the
closedness of A, there exists § > 0 such that A'(x,d) < A" Since {z,}*, < A, =, ¢ N(z,9)

n=1 —

which contradicts to the fact that {z,}> , converges to x. Therefore, z € A.

(<) Suppose the contrary that there exists € A® such that for all § > 0, A'(z,d) & A°; thus for all
§ > 0, N(z,8)nA # . Therefore, there exists a sequence {z,,}:_; such that z,, € N'(z, %) NA.
Then x,, — x as n — o0 since .

|$n_l"<ﬁ;

thus by assumption, x € A, a contradiction. O
Corollary 7.52. Let A < R be closed and x € R. If An N (x,0) # & for all § > 0, then x € A.

Theorem 7.53. If & # A < R is closed and bounded, then sup A€ A and inf A € A.

Proof. We only prove the case that sup A € A since the proof of the counterpart is similar.
Let x = sup A. Then z € R, and for all n € N, by Theorem there exists x,, € A such that

1
rT——<x, <T;
n

thus we construct a sequence {z,}°, < A and z,, — = (by the Sandwich theorem). Therefore,

Theorem implies that x € A. o

Definition 7.54. Let A < R. A collection .# of open subsets of R is an open cover for A if
Ac |J U. If &< Z is asub-collection of .# and Z is also an open cover for A, # is called an

Ues
subcover of F (for A). 2 is called a finite subcover if there is only finitely many elements in 4.

Example 7.55. For n € N, let U,, denote the open set (n — %, n -+ %), and . be the indexed family

F ={U,|n € N}. Then .Z is an open cover of N with no subcovers other than .% itself.



Example 7.56. Since U (—o0,n) = R, the family .# = {(—o0,n) |n € N} is an open cover for R.

There are many subcover of for R, such as
{(=0,2n)|neN} or {(-m,2n+1)|neN}.

Definition 7.57. A subset K < R is said to be compact if for every open cover .# for K, there is

a finite subcover of .# for K. In logic notation,

K is compact < (V.Z open cover of K)(3%8 < .F)(#% < © A A is an open cover of K) .

n+1

Example 7.58. The set A = {1} u { ‘n € N} is compact.

Let .7 = {Ua ‘ a € ]} be an open cover of A. Then 1 € U,, for some oy € I. Since U, is open,

there exists § > 0 such that NV (1,d) € Uy,,. Since lim %1 1, there exists N > 0 such that
n—00
ntl, N(1,6) for all n > N. Therefore,
{1}u{”+1 ‘n)N} < U, .

. . +1
Let Uy, where 1 < j < N —1, be open sets in .% such that ? € U,;. We note that such a; exists

J
since . is an open cover for A. Then

N-1
c v
=
Lemma 7.59. A compact set must be closed.

Proof. Let K be a compact set. Suppose the contrary that there exists a convergent sequence

{x,}2, < K with limit = ¢ K. For each y € K, the |I;y|—neighb0rhood of y is open and non-
empty; thus

F = {N(y,' |)‘yeK}

is an open cover of K. Since K is compact, there is a finite subcover

B = {N(?sz, |x;yk|)‘1 <k3<M7?/1, 7yMEK}

of # for K. Letd—mln{‘ —uil |I;y2|,--',| yM'} Then |z — yx| = 26 for 1 < k < M and

9 > 0. Since z, >z asn — oo, there exists N > 0 such that |z, — 2| < § whenever n > N. Then
forl<k< Mandn>N,

lyr — x| yr — 2
luk — | = |y — x| — |2 — 20| > |yp — x| — 5 — R

Therefore, if n > N, z, ¢ N (yk, ’yk; x‘) which implies that z,, ¢ J U, a contradiction (since
Ue%#
z, € K). D

Lemma 7.60. A compact set must be bounded.



Proof. Let K < R be a compact set. Define . = {(—n,n) ‘n € N}. Then clearly .# is an open

cover of K since .% also covers R. Since K is compact, there is a finite subcover
B = {(_nkank)|1 <k< M?”l?"' ,HMEN}

of Z for K. Let N = max{ny,---,ng}. Then

||C§

nk,nk N,N)

which implies that || < N 4 1 for all z € K. Therefore, K is bounded. o

Theorem 7.61 (Heine-Borel Theorem). A subset K < R is compact if and only if K is closed and
bounded.

Proof. By Lemma and , it suffices to shows that if K is closed and bounded, then K is
compact. Let . = {UCy | S I} be an open cover for K. For each x € R, define K, = {a e K ‘ a < x}
Define

D= {x eR ‘ K, is included in a union of finitely many open sets from .%# } .

We claim that D is non-empty and D has no upper bound.

1. Since K is bounded, inf K € R exists. Let z < inf K. Then K, is empty which implies that
zeD.

2. Suppose the contrary that D is bounded from above. Then xy = sup D exists in R. If there
is € > 0 such that K n N (zg,¢) = &, then zy + ¢ € D which contradicts to that 2o = sup D.
Therefore, K n N (zg,¢) # & for all ¢ > 0. By the closedness of K, zy € K.

Since .# is an open cover, xg € U,, for some U,, € .#. Since U,, is open, there exists
§ > 0 such that N(xg,0) S U,,. Since zq = sup D, there exists x1 € (xg — 0,20) N D. Since

z1 € D there exist Ual, Usyy - Uy, € F such that K,, < U Ua,;- Let xo = 2o + é Then
7j=1
29 € Uy, thus K, < U Ua,; which implies that x; € D which contradicts to that zq = sup D.
7=0

Now, since K is bounded, sup K € R. Since D has no upper bound, there exists d € D such that
d > sup K. Therefore, K; = K which implies that K is included in a union of finitely many open

sets from .%; thus K is compact. O
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