Calculus I Midterm 1 Sample, the rest 40%

National Central University, Summer 2011
Problem 1. Suppose that $f(x)=-\left(2+\frac{\pi}{4}\right) \sin x+x \cos x$ is defined on the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.
(1) Show that

$$
|f(x)-f(y)| \leq\left(1+\frac{\pi}{2}\right) \frac{\sqrt{2}}{2}|x-y| \quad \forall x, y \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] .
$$

(2) Sketch the graph of f defined in (2) with the information of
(a) intercepts;
(b) interval of increase and decrease;
(c) extreme values and critical points; and
(d) concavity and inflection points.

Problem 2. Exercise problem 70 in Section 4.7.
Problem 3. Show that $x^{3}+x+1=0$ has exactly one solution, and use Newton's method to compute the approximated solution x_{2} with the initial guess $x_{0}=0$.

Problem 4. Find an anti-derivative of $g(x)=x \sin x$.
Hint: Check the derivative of f defined in Problem 1 (2).

