Calculus I Midterm 1 Sample, the rest 40%

National Central University, Summer 2011

Problem 1. Suppose that $f(x) = -\left(2 + \frac{\pi}{4}\right)\sin x + x\cos x$ is defined on the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

(1) Show that

$$|f(x) - f(y)| \le (1 + \frac{\pi}{2})\frac{\sqrt{2}}{2}|x - y| \qquad \forall x, y \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right].$$

- (2) Sketch the graph of f defined in (2) with the information of
 - (a) intercepts;
 - (b) interval of increase and decrease;
 - (c) extreme values and critical points; and
 - (d) concavity and inflection points.

Problem 2. Exercise problem 70 in Section 4.7.

Problem 3. Show that $x^3 + x + 1 = 0$ has exactly one solution, and use Newton's method to compute the approximated solution x_2 with the initial guess $x_0 = 0$.

Problem 4. Find an anti-derivative of $g(x) = x \sin x$. **Hint:** Check the derivative of f defined in Problem 1 (2).