Calculus Quiz 1

1. (5 pts)

a. Evaluate the limit $\lim_{x \to \frac{1}{n}^+} x\left[\frac{1}{x}\right]$ for $n \in \mathbb{N}$, and $\lim_{x \to 0^+} x\left[\frac{1}{x}\right]$. **b.** Is there a number a such that $3x^2 + ax + a + 3$

$$\lim_{x \to -2} \frac{x^2 + x - 2}{x^2 + x - 2}$$

exists? If so, find the value of a and the value of the limit.

Sol.

a.

$$\lim_{x \to \frac{1}{n}^{+}} x \left[\frac{1}{x}\right] = \left(\lim_{x \to \frac{1}{n}^{+}} x\right) \left(\lim_{x \to \frac{1}{n}^{+}} \left[\frac{1}{x}\right]\right) = \frac{1}{n} \left(\lim_{y \to n^{+}} [y]\right) = \frac{n-1}{n}$$
On the other hand, since $\frac{1}{x} - 1 \le \left[\frac{1}{x}\right] \le \frac{1}{x}$, so
 $1 - x \le x \left[\frac{1}{x}\right] \le 1$
Since $\lim_{x \to 0^{+}} (1-x) = \lim_{x \to 0^{+}} 1 = 1$. By Squeeze Theorem, we
have that $\lim_{x \to 0^{+}} x \left[\frac{1}{x}\right] = 1$.
b. Note that
 $\frac{3x^{2} + ax + a + 3}{x^{2} + x - 2} = \frac{3x^{2} + ax + a + 3}{(x + 2)(x - 1)}$
Hence the limit $\lim_{x \to -2} \frac{3x^{2} + ax + a + 3}{x^{2} + x - 2}$ exists if and only if
 $x + 2$ divides $3x^{2} + ax + a + 3$. Let $f(x) = 3x^{2} + ax + a + 3$,
then the limit exists if and only if $f(-2) = 0$, that is,
 $12 - 2a + a + 3 = 0 \Rightarrow a = 15$. In this case,
 $\lim_{x \to -2} \frac{3x^{2} + 15x + 18}{x^{2} + x - 2} = \lim_{x \to -2} \frac{3(x + 2)(x - 1)}{(x + 2)(x - 1)} = \lim_{x \to -2} \frac{3(x + 3)}{(x - 1)} = -1$

2. (5 pts)

a. Show that $|\sin x| \le |x| \le |\tan x|$ for $-\frac{\pi}{2} < x < \frac{\pi}{2}$. **b.** Using **a.** to prove that $\lim_{x\to 0} \frac{\sin x}{x} = 1$. **c.** Derive a formula for area of regular *n*-gon inscribed in circle

with radius r and show that the area of the circle is πr^2 .

It is clear that

 \mathcal{O}

area $\Delta OAP < area \text{ sector } OAP < area \Delta OAT$

Q

This immediately implies that

 $0 < \sin x < x < \tan x$

For $-\frac{\pi}{2} < x < 0$, let y = -x, then $0 < y < \frac{\pi}{2}$, and thus we have $\sin y < y < \tan y$. That is,

A(1, 0)

$$0 < -\sin x = \sin(-x) < -x < \tan(-x) = -\tan x$$

and hence $0 > \sin x > x > \tan x$. Note that $\sin 0 = \tan 0 = 0$. Therefore, we get

$$|\sin x| \le |x| \le |\tan x|$$
, for $-\frac{\pi}{2} < x < \frac{\pi}{2}$

b. For $0 \le x < \frac{\pi}{2}$, we have that $\sin x \le x \le \tan x$. Dividing $\sin x$ on both side, we get

$$1 \le \frac{x}{\sin x} \le \frac{1}{\cos x}$$

By taking reciprocal, we have that

$$\cos x \le \frac{\sin x}{x} \le 1$$

Since $\lim_{x\to 0^+} \cos x = \lim_{x\to 0^+} 1 = 1$. By Squeeze Theorem, we have that $\lim_{x\to 0^+} \frac{\sin x}{x} = 1$. For $-\frac{\pi}{2} < x \le 0$, then $\sin x \ge 1$

 $x \ge \tan x$. By argument similar to that for positive x, we have that $\lim_{x\to 0^-} \frac{\sin x}{x} = 1$. Hence $\lim_{x\to 0} \frac{\sin x}{x} = 1$

c. By connecting each vertices of *n*-gon with center of circle, we get *n* identical isosceles triangles with length *r* and included angle $\frac{2\pi}{n}$. Thus the area A(n) of regular *n*-gon inscribed in circle is

$$A(n) = \frac{nr^2}{2}\sin\frac{2\pi}{n}$$

We can approaching the area of circle by taking limit of A(n) as $n \to \infty$. Therefore, the area A of the circle with radius r is

$$A = \lim_{n \to \infty} A(n) = r^2 \lim_{n \to \infty} \frac{n}{2} \sin \frac{2\pi}{n} = \pi r^2 \lim_{n \to \infty} \frac{\sin \frac{2\pi}{n}}{\frac{2\pi}{n}}$$
$$= \pi r^2 \lim_{x \to 0} \frac{\sin x}{x}, \text{ by letting } x = \frac{2\pi}{n} \Rightarrow x \to 0 \text{ as } n \to \infty$$
$$= \pi r^2$$

	Т	