Calculus Quiz 1

1. (5 pts)
a. Evaluate the limit $\lim _{x \rightarrow \frac{1}{n}^{+}} x\left[\frac{1}{x}\right]$ for $n \in \mathbb{N}$, and $\lim _{x \rightarrow 0^{+}} x\left[\frac{1}{x}\right]$.
b. Is there a number a such that

$$
\lim _{x \rightarrow-2} \frac{3 x^{2}+a x+a+3}{x^{2}+x-2}
$$

exists? If so, find the value of a and the value of the limit.
Sol.
a.
$\lim _{x \rightarrow \frac{1}{n}^{+}} x\left[\frac{1}{x}\right]=\left(\lim _{x \rightarrow \frac{1}{n}^{+}} x\right)\left(\lim _{x \rightarrow \frac{1}{n}^{+}}\left[\frac{1}{x}\right]\right)=\frac{1}{n}\left(\lim _{y \rightarrow n^{+}}[y]\right)=\frac{n-1}{n}$
On the other hand, since $\frac{1}{x}-1 \leq\left[\frac{1}{x}\right] \leq \frac{1}{x}$, so

$$
1-x \leq x\left[\frac{1}{x}\right] \leq 1
$$

Since $\lim _{x \rightarrow 0^{+}}(1-x)=\lim _{x \rightarrow 0^{+}} 1=1$. By Squeeze Theorem, we have that $\lim _{x \rightarrow 0^{+}} x\left[\frac{1}{x}\right]=1$.
b. Note that

$$
\frac{3 x^{2}+a x+a+3}{x^{2}+x-2}=\frac{3 x^{2}+a x+a+3}{(x+2)(x-1)}
$$

Hence the limit $\lim _{x \rightarrow-2} \frac{3 x^{2}+a x+a+3}{x^{2}+x-2}$ exists if and only if $x+2$ divides $3 x^{2}+a x+a+3$. Let $f(x)=3 x^{2}+a x+a+3$, then the limit exists if and only if $f(-2)=0$, that is, $12-2 a+a+3=0 \Rightarrow a=15$. In this case,
$\lim _{x \rightarrow-2} \frac{3 x^{2}+15 x+18}{x^{2}+x-2}=\lim _{x \rightarrow-2} \frac{3(x+2)(x+3)}{(x+2)(x-1)}=\lim _{x \rightarrow-2} \frac{3(x+3)}{(x-1)}=-1$
2. (5 pts)
a. Show that $|\sin x| \leq|x| \leq|\tan x|$ for $-\frac{\pi}{2}<x<\frac{\pi}{2}$.
b. Using a. to prove that $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$.
c. Derive a formula for area of regular n-gon inscribed in circle with radius r and show that the area of the circle is πr^{2}.

Sol.
a. For $0<x<\frac{\pi}{2}$. Consider the graph as follows

It is clear that
area $\triangle O A P<$ area sector $O A P<$ area $\triangle O A T$
This immediately implies that

$$
0<\sin x<x<\tan x
$$

For $-\frac{\pi}{2}<x<0$, let $y=-x$, then $0<y<\frac{\pi}{2}$, and thus we have $\sin y<y<\tan y$. That is,

$$
0<-\sin x=\sin (-x)<-x<\tan (-x)=-\tan x
$$

and hence $0>\sin x>x>\tan x$. Note that $\sin 0=\tan 0=$ 0 . Therefore, we get

$$
|\sin x| \leq|x| \leq|\tan x|, \text { for }-\frac{\pi}{2}<x<\frac{\pi}{2}
$$

b. For $0 \leq x<\frac{\pi}{2}$, we have that $\sin x \leq x \leq \tan x$. Dividing $\sin x$ on both side, we get

$$
1 \leq \frac{x}{\sin x} \leq \frac{1}{\cos x}
$$

By taking reciprocal, we have that

$$
\cos x \leq \frac{\sin x}{x} \leq 1
$$

Since $\lim _{x \rightarrow 0^{+}} \cos x=\lim _{x \rightarrow 0^{+}} 1=1$. By Squeeze Theorem, we have that $\lim _{x \rightarrow 0^{+}} \frac{\sin x}{x}=1$. For $-\frac{\pi}{2}<x \leq 0$, then $\sin x \geq$
$x \geq \tan x$. By argument similar to that for positive x, we have that $\lim _{x \rightarrow 0^{-}} \frac{\sin x}{x}=1$. Hence

$$
\lim _{x \rightarrow 0} \frac{\sin x}{x}=1
$$

c. By connecting each vertices of n-gon with center of circle, we get n identical isosceles triangles with length r and included angle $\frac{2 \pi}{n}$. Thus the area $A(n)$ of regular n-gon inscribed in circle is

$$
A(n)=\frac{n r^{2}}{2} \sin \frac{2 \pi}{n}
$$

We can approaching the area of circle by taking limit of $A(n)$ as $n \rightarrow \infty$. Therefore, the area A of the circle with radius r is

$$
\begin{aligned}
A & =\lim _{n \rightarrow \infty} A(n)=r^{2} \lim _{n \rightarrow \infty} \frac{n}{2} \sin \frac{2 \pi}{n}=\pi r^{2} \lim _{n \rightarrow \infty} \frac{\sin \frac{2 \pi}{n}}{\frac{2 \pi}{n}} \\
& =\pi r^{2} \lim _{x \rightarrow 0} \frac{\sin x}{x}, \text { by letting } x=\frac{2 \pi}{n} \Rightarrow x \rightarrow 0 \text { as } n \rightarrow \infty \\
& =\pi r^{2}
\end{aligned}
$$

