Calculus Quiz 2

1. (5 pts) Find the limits $L=\lim _{x \rightarrow a} f(x)$ for following given functions $f(x)$ and a. And find a number $\delta>0$ such that for all x

$$
0<|x-a|<\delta \Rightarrow|f(x)-L|<\varepsilon
$$

with given ε.
a. $f(x)=\sqrt{1-5 x}, \quad a=-3, \quad \varepsilon=0.5$.
b. $f(x)=\frac{4}{x}, \quad a=2, \quad \varepsilon=0.4$.

Sol.
a. It is easy to see that $\lim _{x \rightarrow-3} \sqrt{1-5 x}=4$. Since $\varepsilon=0.5$, so

$$
\begin{aligned}
|f(x)-L|<\varepsilon & \Leftrightarrow|\sqrt{1-5 x}-4|<0.5 \Leftrightarrow-0.5<\sqrt{1-5 x}-4<0.5 \\
& \Leftrightarrow 3.5<\sqrt{1-5 x}<4.5 \Leftrightarrow 12.25<1-5 x<20.25 \\
& \Leftrightarrow 11.25<-5 x<19.25 \Leftrightarrow-3.85<x<-2.25 \\
& \Leftrightarrow-0.85<x+3=x-a<0.75
\end{aligned}
$$

Choose $\delta=0.75>0$, then we have that $0<|x-a|<\delta$ implies $|f(x)-L|<\varepsilon$.
b. It is easy to see that $\lim _{x \rightarrow 2} \frac{4}{x}=2$. Since $\varepsilon=0.4$, so

$$
\begin{aligned}
|f(x)-L|<\varepsilon & \Leftrightarrow\left|\frac{4}{x}-2\right|<\frac{2}{5} \Leftrightarrow-\frac{2}{5}<\frac{4}{x}-2<\frac{2}{5} \\
& \Leftrightarrow \frac{8}{5}<\frac{4}{x}<\frac{12}{5} \Leftrightarrow \frac{5}{12}<\frac{x}{4}<\frac{5}{8} \\
& \Leftrightarrow \frac{5}{3}<x<\frac{5}{2} \Leftrightarrow-\frac{1}{3}<x-2=x-a<\frac{1}{2}
\end{aligned}
$$

Choose $\delta=\frac{1}{3}>0$, then we have that $0<|x-a|<\delta$ implies $|f(x)-L|<\varepsilon$.
2. (5 pts)
a. Let $f(x)$ be a function defined on $[a, b]$ and for any y between $f(a)$ and $f(b)$, there is $c \in[a, b]$ such that $f(c)=y$. Is it true that f is continuous on $[a, b]$? If not, find an counterexample.
b. Suppose f is a continuous function on $[0,1]$ and $0 \leq f(x) \leq$ $1, \forall x \in[0,1]$. Show that there must exist $c \in[0,1]$ such that $f(c)=c$.

Sol.

a. It is not true for the statement. This says that the converse of the Intermediate Value Theorem is not hold. Consider the following function defined on closed interval $[0,2]$ as

$$
f(x)= \begin{cases}x, & 0 \leq x<1 \\ 3 x-4, & 1 \leq x \leq 2\end{cases}
$$

which has graph of follows

From the figure above, it is easy to see that for any y between $f(0)=0$ and $f(2)=2$, there exists $c \in[0,2]$ such that $f(c)=y$. But $f(x)$ is discontinuous at $x=1$.
b. If $f(0)=0$ or $f(1)=1$, we are done. If it is not the case. Since $0 \leq f(x) \leq 1, \forall x \in[0,1]$, we may assume that $f(0)=a>0$ and $f(1)=b<1$. Let $g(x)=f(x)-x$, then $g(x)$ is defined and continuous on $[0,1]$. Also, $g(0)=$ $f(0)=a>0$ and $g(1)=f(1)-1=b-1<0$. By Intermediate Value Theorem, there exists $c \in(0,1)$ such that $g(c)=0 \Rightarrow f(c)=c$.

