Calculus Quiz 3

1. $(5 \mathrm{pts})$
a. Find the derivative of the function $g(x)=\frac{1}{\sqrt{x}}$ by using the definition of derivative.
b. Let f be a smooth function defined on \mathbb{R} and $c \in \mathbb{R}$. If $f^{\prime}(c)=a, f^{\prime \prime}(c)=b$. Evaluate the following limit

$$
\lim _{h \rightarrow 0}\left[\frac{2 f(c+h)-4 f(c)+2 f(c-h)}{3 h^{2}}+\frac{f(c+h)-f(c-h)}{h}\right]
$$

Sol.
a.

$$
\begin{aligned}
g^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h}=\lim _{h \rightarrow 0} \frac{\frac{1}{\sqrt{x+h}}-\frac{1}{\sqrt{x}}}{h}=\lim _{h \rightarrow 0} \frac{\sqrt{x}-\sqrt{x+h}}{h \sqrt{x(x+h)}} \\
& =\lim _{h \rightarrow 0} \frac{x-(x+h)}{h \sqrt{x(x+h)}(\sqrt{x}+\sqrt{x+h})}=\lim _{h \rightarrow 0} \frac{-1}{\sqrt{x(x+h)}(\sqrt{x}+\sqrt{x+h})} \\
& =\frac{-1}{2 \sqrt{x^{2}} \cdot \sqrt{x}}=\frac{-1}{2 x^{\frac{3}{2}}}
\end{aligned}
$$

b. Let $L=\lim _{h \rightarrow 0}\left[\frac{2 f(c+h)-4 f(c)+2 f(c-h)}{3 h^{2}}+\frac{f(c+h)-f(c-h)}{h}\right]$.

Note that

$$
\begin{aligned}
\frac{f^{\prime}(c)-f^{\prime}(c-h)}{h} & =\frac{\lim _{k \rightarrow 0} \frac{f(c+k)-f(c)}{k}-\lim _{k \rightarrow 0} \frac{f(c-h+k)-f(c-h)}{k}}{h} \\
& =\lim _{k \rightarrow 0} \frac{f(c+k)-f(c)-f(c-h+k)+f(c-h)}{h k}
\end{aligned}
$$

Then

$$
\begin{aligned}
f^{\prime \prime}(c) & =\lim _{h \rightarrow 0} \frac{f^{\prime}(c)-f^{\prime}(c-h)}{h} \\
& =\lim _{h \rightarrow 0} \lim _{k \rightarrow 0} \frac{f(c+k)-f(c)-f(c-h+k)+f(c-h)}{h k}
\end{aligned}
$$

Since $k \rightarrow 0$ arbitrarily, by taking $k=h$, we have that

$$
f^{\prime \prime}(c)=\lim _{h \rightarrow 0} \frac{f(c+h)-2 f(c)+f(c-h)}{h^{2}}
$$

Hence

$$
\begin{aligned}
L & =\frac{2}{3} \lim _{h \rightarrow 0} \frac{f(c+h)-2 f(c)+f(c-h)}{h^{2}}+\lim _{h \rightarrow 0} \frac{f(c+h)-f(c-h)}{h} \\
& =\frac{2}{3} f^{\prime \prime}(c)+\lim _{h \rightarrow 0}\left[\frac{f(c+h)-f(c)}{h}+\frac{f(c)-f(c-h)}{h}\right] \\
& =\frac{2}{3} f^{\prime \prime}(c)+\lim _{h \rightarrow 0} \frac{f(c+h)-f(c)}{h}+\lim _{h \rightarrow 0} \frac{f(c)-f(c-h)}{h} \\
& =\frac{2}{3} f^{\prime \prime}(c)+2 f^{\prime}(c)=\frac{2}{3} b+2 a
\end{aligned}
$$

2. (5 pts)
a. Let $f(x)$ be a function satisfying $|f(x)| \leq x^{2}$ for $-1 \leq x \leq$ 1. Show that f is differentiable at $x=0$ and find $f^{\prime}(0)$.
b. Show that

$$
f(x)= \begin{cases}x^{2} \sin \frac{1}{x}, & x \neq 0 \\ 0, & x=0\end{cases}
$$

is differentiable at $x=0$ and find $f^{\prime}(0)$.
Proof.
a. Since $|f(x)| \leq x^{2}$ for $-1 \leq x \leq 1$, then for $x=0$, we have that $|f(0)| \leq 0$ which implies $f(0)=0$. Also, we have that $-x \leq\left|\frac{f(x)}{x}\right| \leq x, \forall-1 \leq x \leq 1$. Since $\lim _{x \rightarrow 0} x=\lim _{x \rightarrow 0}(-x)=0$. By Squeeze Theorem,

$$
\left|f^{\prime}(0)\right|=\left|\lim _{h \rightarrow 0} \frac{f(h)-f(0)}{h}\right|=\lim _{h \rightarrow 0}\left|\frac{f(h)}{h}\right|=0
$$

This implies that $f^{\prime}(0)=0$.
b. Since $|\sin y| \leq 1, \forall y$. So $\left|x^{2} \sin \frac{1}{x}\right| \leq x^{2}, \forall x$. In particular for all $-1 \leq x \leq 1$. Also, since $f(0)=0$. By argument in a., we can conclude that f is differentiable at $x=0$ and $f^{\prime}(0)=0$.

