Calculus Quiz 3

1. (5 pts)
1
a. Find the derivative of the function g(z) = 7 by using
x
the definition of derivative.
b. Let f be a smooth function defined on R and ¢ € R. If
f'(¢) =a, f"(c) =b. Evaluate the following limit
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Sol.
a.
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Since k — 0 arbitrarily, by taking k = h, we have that
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Hence
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2. (5 pts)

a. Let f(z) be a function satisfying |f(z)| < 22 for —1 <z <
1. Show that f is differentiable at = 0 and find f’(0).
b. Show that

1
x?sin—, x#0
T
0, z=0
is differentiable at z = 0 and find f'(0).

Proof.
a. Since |f(z)] < 2% for —1 < x < 1, then for = 0, we
have that |f(0)| < 0 which implies f(0) = 0. Also, we

f(x)

have that —z < —‘<:1: V —1 < z < 1. Since

flx) =

lim x = lim(—xz) = 0. By Squeeze Theorem,

x—0 z—0
h) —
O] = }lgg)f()hf( haO’f )_O
This implies that f'(0) = 0.

b. Since |siny| < 1, Vy. So ‘l’ sm—‘ < 22, V. In particular

for all =1 < x < 1. Also, since f(0) = 0. By argument in
a., we can conclude that f is differentiable at z = 0 and
7(0) =
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