Calculus Quiz 6

1. (5 pts) Suppose that the edge lengths x, y and z of a closed rectangular box are changing at the following rates:

$$\frac{dx}{dt} = 1 \text{ m/sec}, \quad \frac{dy}{dt} = -2 \text{ m/sec}, \quad \frac{dz}{dt} = 1 \text{ m/sec}$$

Find the rates at which the box's **a.** volume V, **b.** surface area S, and c. diagonal length $\ell = \sqrt{x^2 + y^2 + z^2}$ are changing at the instant when x = 4, y = 3, and z = 2.

a. Since V = xyz, then

$$\frac{dV}{dt} = yz\frac{dx}{dt} + xz\frac{dy}{dt} + xy\frac{dz}{dt}$$

Hence
$$\frac{dV}{dt}\Big|_{(x,y,z)=(4,3,2)} = 2 \text{ m}^3/\text{sec}$$

b. Since $S=2xy+2yz+2xz$, then

$$\frac{dS}{dt} = 2(y+z)\frac{dx}{dt} + 2(x+z)\frac{dy}{dt} + 2(x+y)\frac{dz}{dt}$$

Hence
$$\frac{dS}{dt}\Big|_{(x,y,z)=(2,3,4)} = 0 \text{ m}^2/\text{sec}$$

$$\frac{d\ell}{dt} = \frac{x}{\sqrt{x^2 + y^2 + z^2}} \frac{dx}{dt} + \frac{y}{\sqrt{x^2 + y^2 + z^2}} \frac{dy}{dt} + \frac{z}{\sqrt{x^2 + y^2 + z^2}} \frac{dz}{dt}
= \frac{x}{\ell} \frac{dx}{dt} + \frac{y}{\ell} \frac{dy}{dt} + \frac{z}{\ell} \frac{dz}{dt}$$

Since
$$\ell|_{(x,y,z)=(4,3,2)} = \sqrt{29}$$
, so $\frac{d\ell}{dt}|_{(x,y,z)=(4,3,2)} = 0$ m/sec.

- **2.** (5 pts)
 - **a.** If a and b are positive numbers, find the maximum value of $f(x) = x^a(1-x)^b$, $0 \le x \le 1$.
 - **b.** Prove that the function $f(x) = x^{101} + x^{51} + x + 1$ has neither a local maximum nor a local minimum.

Proof.

a. Since $f(x) = x^{a}(1-x)^{b}$, so

$$f'(x) = ax^{a-1}(1-x)^b - bx^a(1-x)^{b-1}$$
$$= x^{a-1}(1-x)^{b-1}(a-ax-bx)$$

Thus,
$$f'(x) = 0 \Leftrightarrow x = 0$$
, 1 or $x = \frac{a}{a+b}$. Note that $f(1) = f(0) = 0$, and

$$f\left(\frac{a}{a+b}\right) = \frac{a^a}{(a+b)^a} \frac{b^b}{(a+b)^b} \cdot = \frac{a^a b^b}{(a+b)^{a+b}} > 0$$

since a,b>0. Hence the absolute maximum of f(x) is $\frac{a^ab^b}{(a+b)^{a+b}}$.

b. Suppose there is a local maximum of local minimum of f, then there exists $\alpha \in \mathbb{R}$ such that $f'(\alpha) = 0$. Thus,

$$f'(\alpha) = 101\alpha^{100} + 51\alpha^{50} + 1 = 0 \Rightarrow 101\alpha^{100} + 51\alpha^{50} = -1$$

which leads to a contradiction. Therefore f has neither a local maximum nor a local minimum.