## Calculus Quiz 7

1. (5 pts) Let 
$$f(x) = \frac{(x+1)^2}{x^2+1}$$
  
a. Find the intervals of increase or decrease.

- **b.** Find the local maximum and minimum values.
- **c.** Find the intervals of concavity and the inflection points.
- **d.** Find the asymptotes.
- **e.** Sketch the graph of f(x).

Sol. Note that the denominator of f(x) is always positive, so there is no vertical asymptotes of the graph of f. By evaluating the limit

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{x^2 + 2x + 1}{x^2 + 1} = 1, \ \lim_{x \to -\infty} f(x) = \lim_{x \to \infty} \frac{x^2 - 2x + 1}{x^2 + 1} = 1$$

we know that there is an horizontal asymptote y = 1 of the graph of f. By computing the first and second derivative of f, we get

$$f'(x) = -\frac{2(x^2 - 1)}{(x^2 + 1)^2}, \quad f''(x) = \frac{4(x^3 - 3x)}{(x^2 + 1)^3}$$

It is easy to see that  $f'(x) = 0 \Leftrightarrow x = \pm 1$  and  $f''(x) = 0 \Leftrightarrow$ x = 0 or  $x = \pm \sqrt{3}$ . Observe that  $f''(\pm 1) = \mp 1$ , thus f has local maximum at x = 1 and local minimum at x = -1. We have the following table

| x   | $(-\infty, -\sqrt{3})$ | $-\sqrt{3}$ | $(-\sqrt{3},-1)$ | 1    | (-1,0) | 0      | (0,1)    | 1    | $(1,\sqrt{3})$ | $\sqrt{3}$ | $(\sqrt{3},\infty)$ |
|-----|------------------------|-------------|------------------|------|--------|--------|----------|------|----------------|------------|---------------------|
| f'  | _                      | _           | _                | 0    | +      | +      | +        | 0    | +              | +          | +                   |
| f'' | _                      | 0           | +                | +    | +      | 0      | _        | _    | _              | 0          | +                   |
| f   | 7                      | inf.pt.     | 4                | min. | Ì      | inf.pt | <i>^</i> | max. | 7              | inf.pt.    | 4                   |

And the graph of f is as follows



- **2.** (5 pts)
  - **a.** Is it true that f''(c) = 0 implies x = c is an inflection point of f? Explain your answer.
  - **b.** Show that for any  $|\sin b \sin a| \le |b a|, \ \forall \ a, b \in \mathbb{R}$ .

Sol.

**a.** It is not true that f''(c) = 0 implies x = c is an inflection point of f. For example, consider  $f(x) = x^4$ , then

$$f'(x) = 4x^3, \qquad f''(x) = 12x^2$$

Then f''(0) = 0 but x = 0 is not inflection point of f(x).

**b.** Since  $\sin x$  is differentiable function defined on  $\mathbb{R}$ . For any  $a, b \in \mathbb{R}$ , say  $a \leq b$ . By Mean Value Theorem, there exists  $\xi \in (a, b)$  such that

$$\sin b - \sin a = \cos \xi \cdot (b - a)$$

Since  $|\cos x| \le 1$ ,  $\forall x$ , then

$$|\sin b - \sin a| = |\cos \xi||b - a| \le |b - a|$$

Similarly, the argument also can apply to the case a > b, and hence the prove is complete.