Calculus Quiz 8

1. (5 pts) Sketch the curve defined by the function $f(x)=\frac{x^{3}}{x^{2}-1}$. Sol. Observe that the denominator of f vanishes at $x= \pm 1$, so the vertical asymptote for $f(x)$ are $x= \pm 1$. Also, the division algorithm shows that

$$
f(x)=\frac{x^{3}}{x^{2}-1}=x+\frac{x}{x^{2}-1}
$$

So the line $y=x$ is a slant asymptote for f. Compute the first and second derivative of f, we get

$$
f^{\prime}(x)=\frac{x^{4}-3 x^{2}}{\left(x^{2}-1\right)^{2}}, \quad f^{\prime \prime}(x)=\frac{2\left(x^{3}+3 x\right)}{\left(x^{2}-1\right)^{3}}
$$

Set $f^{\prime}(x)=0$, we have that $x^{4}-3 x^{2}=x^{2}\left(x^{2}-3\right)=0 \Rightarrow x=0$ or $x= \pm \sqrt{3}$. Note that $f^{\prime \prime}(0)=0, f^{\prime \prime}(\pm \sqrt{3})= \pm \frac{3 \sqrt{3}}{2}$, so f has local maximum at $x=-\sqrt{3}$ and local minimum at $x=\sqrt{3}$. Furthermore, set $f^{\prime \prime}(x)=0$, we get $x^{3}+3 x=x\left(x^{2}+3\right)=0 \Rightarrow x=$ 0 . Together with the observation that f is an odd function, that is, $f(-x)=-f(x)$. We can conclude that f has an inflection point at $x=0$. Thus we have following table

x	$(-\infty,-\sqrt{3})$	$-\sqrt{3}$	$(-\sqrt{3},-1)$	-1	$(-1,0)$	0	$(0,1)$	1	$(1, \sqrt{3})$	$\sqrt{3}$	$(\sqrt{3}, \infty)$
f^{\prime}	+	0	-	undef.	-	0	-	undef.	-	0	+
$f^{\prime \prime}$	-	-	-	undef.	+	0	-	undef.	+	+	+
f	\nearrow	max.	\downarrow	undef.	\succ	inf.pt	\downarrow	undef.	\hookrightarrow	inf.pt.	\jmath

And the graph of f is as follows

2. (5 pts) Let v_{1} be the velocity of light in air and v_{2} the velocity of light in water. According to Fermat's Principle, a ray of light will travel from a point A in the air to a point B in the water by a path $A C B$ that minimize the time taken.

Show that $\frac{\sin \theta_{1}}{\sin \theta_{2}}=\frac{v_{1}}{v_{2}}$ where θ_{1} (the angle of incidence) and θ_{2} (the angle of refraction) are as shown. This equation is known as Snell's Law.
Proof. Consider the following figure, The total time is

$$
\begin{aligned}
T(x) & =(\text { time from } A \text { to } C)+(\text { time from } C \text { to } B) \\
& =\frac{\sqrt{a^{2}=x^{2}}}{v_{1}}+\frac{\sqrt{b^{2}+(d-x)^{2}}}{v_{2}}, 0<x<d
\end{aligned}
$$

Then

$$
T^{\prime}(x)=\frac{x}{v_{1} \sqrt{a^{2}+x^{2}}}-\frac{d-x}{v_{2} \sqrt{b^{2}+(d-x)^{2}}}=\frac{\sin \theta_{1}}{v_{1}}-\frac{\sin \theta_{2}}{v_{2}} .
$$

Note that

$$
T^{\prime \prime}(x)=\frac{a^{2}}{v_{1}\left(a^{2}+x^{2}\right)^{\frac{3}{2}}}+\frac{b^{2}}{v_{2}\left(b^{2}+(d-x)^{2}\right)^{\frac{3}{2}}}>0, \quad \forall x \in(0, d)
$$

Hence the minimum occurs when $T^{\prime}(x)=0$, that is,

$$
\frac{\sin \theta_{1}}{v_{1}}=\frac{\sin \theta_{2}}{v_{2}}
$$

