Calculus Quiz 11

1. (5 pts) Let $f(x)=\int_{0}^{x} \frac{d t}{\sqrt{1+t^{3}}}, x>0$.
a. Show that $f(x)$ has inverse function.
b. Let $g(x)$ be the inverse function of $f(x)$. Show that g has the following property

$$
g^{\prime \prime}(x)=c g(x)^{2}
$$

and determine the value c.

Sol.
a. Note that $f^{\prime}(x)=\frac{1}{\sqrt{1+x^{3}}}>0$ for $x>0$. This implies that f is strictly increasing, and hence is one-to-one. Therefore it has inverse function.
b. Since g is the inverse function of f, we have that

$$
g^{\prime}(x)=\frac{1}{f^{\prime}(g(x))}=\sqrt{1+g(x)^{3}}
$$

Thus by chain rule,

$$
g^{\prime \prime}(x)=\frac{3 g(x)^{2} g^{\prime}(x)}{2 \sqrt{1+g(x)^{3}}}=\frac{3}{2} g(x)^{2} \frac{\sqrt{1+g(x)^{3}}}{\sqrt{1+g(x)^{3}}}=\frac{3}{2} g(x)^{2}
$$

This shows that $g^{\prime \prime}(x)=c g(x)^{3}$ with $c=\frac{3}{2}$.

1. (5 pts)
a. The error function is defined as $\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} d t$. Show that the function $y=e^{x^{2}} \operatorname{erf}(x)$ satisfies the differential equation

$$
y^{\prime}=2 x y+\frac{2}{\sqrt{\pi}}
$$

b. Evaluate the indefinite integral $\int \frac{d x}{\csc x-2 \cot x}$.

Sol.
a. Since $y=e^{x^{2}} \operatorname{erf}(x)$. Then by Product Rule and FTC,

$$
\begin{aligned}
y^{\prime} & =2 x e^{x^{2}} \operatorname{erf}(x)+e^{x^{2}} \operatorname{erf}^{\prime}(x)=2 x y+e^{x^{2}} \cdot \frac{2}{\sqrt{\pi}} e^{-x^{2}} \\
& =2 x y+\frac{2}{\sqrt{\pi}}
\end{aligned}
$$

b.

$$
\begin{aligned}
\int \frac{d x}{\csc x-2 \cot x} & =\int \frac{\sin x}{1-2 \cos x} d x \\
& =\frac{1}{2} \int \frac{d u}{u}, \text { by letting } u=1-2 \cos x \Rightarrow d u=2 \sin x d x \\
& =\frac{1}{2} \ln |u|+C=\ln \sqrt{1-2 \cos x}+C
\end{aligned}
$$

