Calculus Quiz 12

1. (5 pts) A population often increases exponentially in its early stages but levels off eventually and approaches its carrying capacity because of limited resources. Let $P(t)$ is the size of the population at time t., we assume that P satisfies following equation

$$
\frac{1}{P} \frac{d P}{d t}=k\left(1-\frac{P}{A}\right), \text { where } A, k \text { are constants }
$$

a. By letting $Q(t)=\frac{A}{P(t)}-1$, then what kind of equation that Q have to be satisfied?
b. Prove that $P(t)=\frac{A}{1+B e^{-k t}}$ for some constant B.

Sol.
a. Since $Q(t)=\frac{A}{P(t)}-1$, so

$$
\begin{aligned}
\frac{d Q}{d t} & =-\frac{A P^{\prime}}{P^{2}}=-\frac{A}{P^{2}} \cdot k P\left(1-\frac{P}{A}\right) \\
& =-\frac{k}{P}(A-P)=-k\left(\frac{A}{P}-1\right)=-k Q
\end{aligned}
$$

Thus Q satisfies the equation $\frac{d Q}{d t}=-k Q$.
b. By a. and Theorem 2, we know that $Q(t)=B e^{-k t}$ for some constant B. Since $Q(t)=\frac{A}{P(t)}-1$. So

$$
\frac{A}{P(t)}-1=B e^{-k t} \Rightarrow P(t)=\frac{A}{1+B e^{-k t}}
$$

2. (5 pts)
a. For $x \geq 0$, show that

$$
\sin ^{-1}\left(\frac{x-1}{x+1}\right)-2 \tan ^{-1} \sqrt{x}=C
$$

for some constant C and determine what value C is.
b. Recall that $\int_{0}^{\pi} x f(\sin x) d x=\frac{\pi}{2} \int_{0}^{\pi} f(\sin x) d x$ for continuous f defined on $[0, \pi]$. Use this to evaluate the integral

$$
\int_{0}^{\pi} \frac{x \sin x}{1+\cos ^{2} x} d x
$$

Sol.
a. Let $f(x)=\sin ^{-1} \frac{x-1}{x+1}$ and $g(x)=2 \tan ^{-1} \sqrt{x}$. Then

$$
\begin{aligned}
& f^{\prime}(x)=\frac{1}{\sqrt{1-\left(\frac{x-1}{x+1}\right)^{2}}} \cdot \frac{(x+1)-(x-1)}{(x+1)^{2}}=\frac{1}{\sqrt{x}(x+1)} \\
& g^{\prime}(x)=\frac{2}{1+x} \cdot \frac{1}{2 \sqrt{x}}=\frac{1}{\sqrt{x}(x+1)}
\end{aligned}
$$

This shows that f and g have the same derivative for $x \geq 0$. Hence there exists a constant C such that $f(x)-g(x)=C$, that is,

$$
\sin ^{-1}\left(\frac{x-1}{x+1}\right)-2 \tan ^{-1} \sqrt{x}=C, x \geq 0
$$

By taking $x=0$, we have that

$$
C=\sin ^{-1} 0-2 \tan ^{-1} 1=-\frac{\pi}{2}
$$

b.

$$
\begin{aligned}
\int_{0}^{\pi} \frac{x \sin x}{1+\cos ^{2} x} d x & =\frac{\pi}{2} \int_{0}^{\pi} \frac{\sin x}{1+\cos ^{2} x} d x=\frac{\pi}{2} \int_{-1}^{1} \frac{d u}{1+u^{2}}, \text { by letting } u=\cos x \Rightarrow d u=-\sin x d x \\
& =\left.\frac{\pi}{2} \tan ^{-1} u\right|_{u=-1} ^{u=1}=\frac{\pi}{2}\left(\tan ^{-1} 1-\tan ^{-1}(-1)\right) \\
& =\frac{\pi}{2}\left(\frac{\pi}{4}+\frac{\pi}{4}\right)=\frac{\pi^{2}}{4}
\end{aligned}
$$

