Calculus Quiz 12

1. (5 pts) A population often increases exponentially in its early
stages but levels off eventually and approaches its carrying ca-
pacity because of limited resources. Let P(t) is the size of the
population at time ¢., we assume that P satisfies following equa-
tion
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a. By letting Q(t) — 1, then what kind of equation

~ P(1)
that @ have to be satisfied?
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b. Prove that P(t) = 1T B for some constant B.
Sol.
a. Since Q(t) = — 1, s0
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Thus () satisfies the equation i —kQ.
b. By a. and Theorem 2, we know that Q(t) = Be * for
some constant B. Since Q(t) = P 1. So
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2. (5 pts)
a. For x > 0, show that
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sin~? <i+ 1) —2tan 'z =C

for some constant C' and determine what value C is.
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b. Recall that / zf(sinx)dr = g/ f(sinz)dz for contin-
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uous f defined on [0, 7]. Use this to evaluate the integral
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Sol.

a. Let f(z) = sin™" i; 1 and g(x) = 2tan~!y/z. Then
b 1 (x+1)—(x—1) 1
@) =———= "7~ es)

1 (erl)
J(2) 2 1 1

T 14z 2y Va1
This shows that f and g have the same derivative for z > 0.
Hence there exists a constant C' such that f(x)—g(z) = C,
that is,
sin < )—2tan V=0, x>0
r+1
By taking z = 0, we have that

C=sin"'0—2tan"'1 = _r
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b.
T xsinzx T [T sinzx T [t du
—  dr = — —  dr = — ——, by letting u=cos z=du=—sinzdz
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