Calculus Homework 1
National Central University, Spring semester 2012

Problem 1. (10%) Compute the following limits.
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Problem 2. Complete the following.

(1) (5%) Let f and g be two functions, and f(a) = g(a) = 0 for some number a € R. Suppose
a) # 0. Show that

)
) _ ['(a)
) g'(a)

The same conclusion can be drawn if the limit is changed to the right-hand limit or the left-hand

lim 74%) _

(

that f and g are differentiable at a, and ¢'(
(

rT—ra g(x

limit, as long as f and ¢ are differentiable from the right or the left at 0.

(2) (10%) Use (1) to compute the following limits:

z7 -1 . V1l+a2—1
(b) lim —————.

1 ————
z—1 sin(mx) =0 1 —cosx

(3) (5%) Suppose that f is twice continuously differentiable. Use (1) to show that

L flath) = 2f(a) + fla—h)
h—0 h?

= /"(a).

Hint: For (2b), you cannot simply assign g(x) = 1 — cosx since ¢’(0) = 0 which is not allowed in
order to apply (1). However, you can make a slight modification of the limit by letting y = 2*. Then
the original limit becomes the limit of some function of y as y — 0% . You will have to use similar

technique to compute the limit in (3).



Proof.

(1) Since f(a) = g(a) = 0, f and g are differentiable at a, and ¢'(a) # 0, by the properties of
limits, we find that
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(2) (a) Let f(z) = V/1+22—1and g(z) = sinz. Then f'(0) = 3,{/% W 0 and ¢'(0) =

cos(0 = 1; thus
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(3) Let k = h?. Then
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(1 —cosz)sin(cotz) if z #0,
0 ifz=0.
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Problem 3. (10%) Let f : (— 53

Find the derivatives of f .

) — R be defined by f(z) = {

Sol. If z # 0,

f'(z) = (1 = cosz)'sin(cot ) + (1 — cosz) [ sin(cot z)] ,
= sinz sin(cot z) + (1 — cos z) cos(cot z) [ cot z /

= sinz sin(cot ) — (1 — cos ) cot = csc x cos(cot x) .



1 .
The derivative of f at 0is f'(0) = }lLir% (1 = cos h})lsm(cot ")
—

. However, since

~1—cosh < (1 — cos h) sin(cot h) - 1 —cosh

< if h#0,
Id h Id
by the Squeeze Theorem and Problem 1(1), we find that f’(0) = 0. Therefore,

sin z sin(cot x) — (1 — cosx) cot x csc x cos(cotx) if x # 0,

f/(x>:{ 0 ifr=0. -

Problem 4. Suppose that f: (0,00) = R and g : R — (0, 00) are two strictly increasing, differen-

tiable functions satisfying
flg(@)) ==z VazeR, g(f(z)) =z Vae(0,0),

and f(ab) = f(a) + f(b) for all a,b > 0.
/)

(1) (5%) Show that f'(z) = for all z > 0.

(2) (5%) Show that f’(1)g’(0) =1.
(3) (5%) Show that ¢g'(x) = g(2)g’(0) for all x € R.
Proof.
(1) For any ¢ > 0, f(cz) = f(c) + f(x). Differentiate both sides with respect to z, we find that
cf'(cx) = f'(x) Vi>0.

This relation holds for all fixed ¢ > 0; hence in particular letting ¢ = 1/2 we conclude that

=L

(2) First of all, we observe that f(1-1) = f(1)+ f(1); hence f(1) = 0. By letting x = 1 in the
relation ¢g(f(x)) = x, we obtain that ¢(0) = 1. By differentiating f(g(z)) = x, we find that

for all z > 0.

f'(g(x))g'(x) = 1.
Letting = 0 in the relation above gives us f'(1)g’(0) = 1.

(3) Similarly, since g(f(x)) =z,

X

g'(f@)f'(x)=1 = g’(f(x))zm

=g'(0)z.

Replacing = by g(z) in the relation above, we then conclude that ¢'(z) = ¢'(0)g(z) . O

Problem 5. Suppose that z and y satisfy the relation ysin(z?) = z sin(y?) .

d
(1) (5%) Find d_y using the implicit differentiation.
T



(2) (5%) Find the tangent line to the curve at the point (1,0).

Sol.

(1) Differentiate both sides of ysin(z?) = z sin(y?) with respect to x, we find that

sin(xQ)Z—z + 2z cos(2?) = sin(y?) + 2y cos(yz)j—z

d
& _ sin(y?) — 22y cos(x?)

dz
dy  sin(y?) — 2zy cos(x?)

= |sin(2?) — 22y cos(y?)

dr  sin(x?) — 22y cos(y?)

(2) At (1,0) = 0; hence the tangent line to the curve at (1,0) is y = 0. O

4@y
" dx
Problem 6. Complete the following.

(1) (5%) Suppose that f is continuous on [a, b] and is differentiable on (a,b) with |f'(z)| < M for
all x € (a,b). Show that

[f(@) = fl <Mz —y|  Va,y€lab].

(2) (5%) Suppose that f(z) = (2 — %) sinz — x cosz is defined on the interval [—g : } . Use (1)

to show that

2

@) = f@) < Gle—yl  Veye[-F.5].

23
(3) (7%) Sketch the graph of f defined in (2) with the information of

a

b

(a) intercepts;

(b) interval of increase and decrease;

(c) extreme values and critical points; and
)

(d) concavity and inflection points.
Proof. (1) By the mean value theorem, there exists z between x and y such that

f@)=fy) =@ -y = [fl@) =Wl =Glr -yl < Mz —y|.

(2) Tt suffices to show that |f'(x)] < g for all z € (—g , g) . First of all,
, s . T .
flx)=(2- Z) cosz — cosx + wsinz = (1 — Z) cosx + xrsinx.

The extreme values of |f| can be obtained by the extreme values of f. In order to find the

extreme values of f’, we compute the second derivative of f and obtain that

f(z)=—-(1- Z) sinz +sinz + xcosz = %sinxjtxcos:z;



. . . T . T .
hence the critical points of f’ satisfies —sinxz + zcosz = 0. In ( -, 5) , there is only one

critical point which is 0. Comparing the values of f’ at the critical point and the endpoints,

we find that the absolute maximum of | f’(x)| occurs at — g or © ; thus

2
/()] < \f’(g)\ = g Ve (—gg) .

(3) There is only one intercept (0,0) since the only solution to tanz = z/c for ¢ > 1in (—7/2,7/2)
is 0. There is no critical point since there is no solution to tanz = c¢/z in ( — 7/2,7/2) if
¢ < 0. Moreover, f' > 0in (—n/2,7/2); hence f is increasing in the interval of interest. (0,0)
is the inflection point since f” changes sign at x = 0. f” > 0if 0 <z < 7/2, and f” < 0 if
—7/2 < x < 0. Therefore, the graph is concave upward in (0,7/2), and concave downward in
(—=m/2,0). In a nutshell, we have the following table

x —7/2 0 /2
f | —@=m/4) O (2-m/4)
i ¥ e
f‘l/ _ O ‘l’

and the graph of f is

O

Problem 7. (10%) Price elasticity of demand (Eq4) is a measure used in economics to show
the responsiveness, or elasticity, of the quantity demanded of a good or service to a change in its
price. More precisely, it gives the percentage change in quantity demanded in response to a one
percent change in price (holding constant all the other determinants of demand, such as income).
For example, if 1% change of the price of certain good results in 1.5% change of the quantity demand
of that good, then the price elasticity of demand is 1.5.
The formula for the coefficient of price elasticity of demand for a good is
% change in quantity demand — AQq/Qq
% change in price AP/P
where Qq is the quantity demand, and P is the price. The point price elasticity is defined using

Eq =

Calculus by
AQ¢/Qqa P 1

Eq=- 1 = X
47 7 Agis0 AP/P Qi P(Qa)’




here we treat the price as a function of the quantity demand, and common sense suggests that an
increase of quantity demand results in price drop, that is, P/(Qq) < 0 for all Qq > 0.

Elasticities of demand are interpreted as follows:

(1) Perfectly inelastic demand if Eq = 0;

(2) Inelastic or relatively inelastic demand if 0 < Eq < 1;

(3) Unit elastic, unit elasticity, unitary elasticity, or unitarily elastic demand if Eq = 1;
(4) Elastic or relatively elastic demand if 1 < E4 < o0}

(5) Perfectly elastic demand if Eq4 = 0o

Show that the total revenue is maximized at the combination of price and quantity demanded where
the elasticity of demand is unitary.
Hint: The total revenue function R is defined by Qq x P.
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Proof. The total revenue function R(z) is the same as xP(z) ; thus

R'(z) = P(z) + 2P'(x).



At the critical point zq, P(z9) = —2oP'(x¢) ; hence Eq = 1 at xg . O

Problem 8. (8%) Show that cosz = 2z has exactly one solution, and use Newton’s method to

compute the approximated solution z, with the initial guess xqg = 0.

Proof. Let f(x) = cosxz—2x. Then f(—1) > 0 while f(1) < 0. By the immediate value theorem we
know that there exists © € [—1, 1] such that f(z) =0.

Suppose there are two distinct solutions a and b with a < b (that is, f(a) = f(b) = 0). By the
Rolle theorem, there exists a < ¢ < b such that f’(¢) = 0. However, f’(¢) = —sinc—2 < 0 for all
¢ € R; hence it is impossible to have two solutions.

Newton’s method gives us the scheme
flzy) COS Ty, — 2y,

Tpt1 = Ty — ,(l’n) — 4n sinxn +9

f
to compute approximated solutions to f(z) = 0. When zq = 0, then z; = 1/2; thus

x_1+cosO.5—1 0
2792 T §in054+2°

Problem 9. (5%) Find an anti-derivative G(z) of g(x) = xsinz satisfying G(3) =0.
Hint: Check the derivative of f defined in Problem 1 (2).

Sol: If f(z) = —(2+ %) sinx + x cosx,

flz)=—-(2+ %) cosz + cosz — xsine = —(1+ %) cosT —xsinx.

Therefore,

fl@)+G'(z)=—(1+ Z) cosS T .

However, an anti-derivative of the right-hand side of the equation above is — (1 + %) sin z ; hence
TN .
f@)+G(z)=—(1+ Z) sinz + C
for some constant C'. This suggests that

G(z) = —(1+%) sing — f(z) + C =sinz —zcosz + C.

Since G(%) =0, C = —1; thus G(z) = — (1 + %) sinz — f(z)+ C =sinx —xcosz — 1. O



