Calculus II Final

National Central University, Spring 2012, Jun. 21, 2012

Problem 1. (15%) Let Σ be part of the cylinder $x^2 + y^2 = 1$ which is bounded by the helix $\vec{r}_1(t) = (\cos t, \sin t, t), \ 0 \le t \le 4\pi$, and a line segment $\vec{r}_2(t) = (1, 0, t), \ 0 \le t \le 4\pi$.

Compute $\iint_{\Sigma} x^3 dS$.

Sol: Σ can be parametrized by

$$\vec{r}$$
 $(\theta, z) = (\cos \theta, \sin \theta, z)$, $0 \le \theta \le 2\pi$, $\theta \le z \le 2\pi + \theta$.

Note that $\|\vec{r}_{\theta} \times \vec{r}_{z}\| = 1$. Therefore

$$\iint_{\Sigma} x^3 dS = \int_0^{2\pi} \int_{\theta}^{2\pi+\theta} \cos^3\theta dz d\theta = \int_0^{2\pi} (2\pi + \theta - \theta) \cos^3\theta d\theta$$
$$= 2\pi \int_0^{2\pi} \cos^3\theta d\theta = 2\pi \int_0^{2\pi} \cos\theta (1 - \sin^2\theta) d\theta$$
$$= 2\pi (\sin\theta - \sin^3\theta) \Big|_{\theta=0}^{\theta=2\pi} = 0.$$

Problem 2. Let C be the polar curve with polar representation $r = \cos 3\theta$, $0 \le \theta \le \pi$.

1. (15%) Use the area formula

$$A = \frac{1}{2} \oint_C x dy - y dx$$

to compute the area enclosed by the Cardioid.

- 2. (15%) Let $\vec{F}(x,y) = (4x,3xy)$ be a vector field on the plane. Use Green's theorem to compute the line integral $\oint_C \vec{F} \cdot d\vec{r}$, where $\vec{r}(t) = \cos 3t(\cos t, \sin t)$, $0 \le t \le \pi$.
- 3. (10%) Let C_1 be part of the Cardioid C with $\frac{\pi}{3} \leq \theta \leq \frac{2\pi}{3}$. Compute the line integral $\int_C \vec{G} \cdot d\vec{r}$ where $\vec{G}(x,y) = (e^x y, e^x)$.

Sol:

1. A parametrization of the curve C is $\overrightarrow{r}(t) = (x(t), y(t)) = (\cos 3t \cos t, \cos 3t \sin t)$, $0 \le t \le \pi$. Since $x(t) = \frac{\cos 4t + \cos 2t}{2}$ and $y(t) = \frac{\sin 4t - \sin 2t}{2}$, $x'(t) = -2\sin 4t - \sin 2t$ and $y'(t) = 2\cos 4t - \cos 2t$. Therefore,

$$\oint_C x dy - y dx = \int_0^{\pi} \left[\frac{\cos 4t + \cos 2t}{2} \left(2\cos 4t - \cos 2t \right) + \frac{\sin 4t - \sin 2t}{2} \left(2\sin 4t + \sin 2t \right) \right] dt
= \int_0^{\pi} \left[\cos^2 4t + \frac{1}{2}\cos 4t \cos 2t - \frac{1}{2}\cos^2 2t + \sin^2 4t - \frac{1}{2}\sin 4t \sin 2t - \frac{1}{2}\sin^2 2t \right] dt
= \int_0^{\pi} \left[\frac{1}{2} + \frac{1}{2}\cos 6t \right] dt = \frac{\pi}{2};$$

thus the area enclosed by C is $\pi/4$.

2. $\overrightarrow{F}(x,y) = (4x,3xy)$. By Green's theorem,

$$\oint_C \vec{F} \cdot d\vec{r} = \iint_R 3y dA = \int_0^\pi \int_0^{\cos 3\theta} 3r^2 \sin \theta r dr d\theta$$

$$= \int_0^\pi \cos^3 3\theta \sin \theta d\theta = \frac{1}{4} \int_0^\pi (\cos 9\theta + 3\cos 3\theta) \sin \theta d\theta$$

$$= \frac{1}{8} \int_0^\pi \left[\sin 10\theta - \sin 8\theta + 3 \left(\sin 4\theta - \sin 2\theta \right) \right] d\theta = 0.$$

3. Note that $\overrightarrow{G} = \nabla g$ if $g(x,y) = ye^x$. Therefore, by the fundamental theorem of the line integral, we find that

$$\int_{C_1} \vec{G} \cdot d\vec{r} = g(\vec{r} \ (\frac{2\pi}{3})) - g(\vec{r} \ (\frac{\pi}{3})) = g(-\frac{1}{2}, \frac{\sqrt{3}}{2}) - g(-\frac{1}{2}, -\frac{\sqrt{3}}{2}) = \sqrt{3}e^{-\frac{1}{2}} \,.$$

Problem 3. Let D be the solid given by

$$(x, y, z) = \Phi(u, v, w) = (\cos v \cos u, \cos v \sin u, w \sin 2v), \quad 0 \le u \le 2\pi, -\frac{\pi}{2} \le v \le \frac{\pi}{2}, \ 0 \le w \le 1,$$

whose surface Σ is obtained by rotating the curve $\vec{r}(t) = (\cos t, \sin 2t), -\frac{\pi}{2} \le t \le \frac{\pi}{2}$, on the xz-plane about the z-axis.

- 1. (10%) Compute the volume of D.
- 2. (10%) Let $\vec{r}(u,v) = \Phi(u,v,1)$. Then $\vec{r}(u,v)$ with $(u,v) \in [0,2\pi] \times \left[-\frac{\pi}{2},\frac{\pi}{2}\right]$ is a parametrization of Σ . Compute $\vec{r}_u \times \vec{r}_v$, as well as $\|\vec{r}_u \times \vec{r}_v\|$.
- 3. (5%) There are two unit normal vectors $\frac{\overrightarrow{r}_u \times \overrightarrow{r}_v}{\|\overrightarrow{r}_u \times \overrightarrow{r}_v\|}$ and $-\frac{\overrightarrow{r}_u \times \overrightarrow{r}_v}{\|\overrightarrow{r}_u \times \overrightarrow{r}_v\|}$ at each point $\overrightarrow{r}(u,v)$ on Σ . Determine which one is compatible with the outward pointing orientation.
- 4. (20%) Let $\vec{F}(x,y,z) = (x,y,0)$. Compute the flux integral $\iint_{\Sigma} \vec{F} \cdot \vec{N} dS$ by the definition of surface integral.
- 5. (5%) Use the divergence theorem to compute the surface integral $\iint_{\Sigma} \vec{F} \cdot \vec{N} dS$, where \vec{N} is the outward point unit normal to Σ .

Sol:

1. Since

$$\frac{\partial(x,y,z)}{\partial(u,v,w)} = \begin{vmatrix} -\cos v \sin u & \cos v \cos u & 0\\ -\sin v \cos u & -\sin v \sin u & 2w \cos 2v\\ 0 & 0 & \sin 2v \end{vmatrix} = \sin 2v \sin v \cos v,$$

the volume of D is

$$\iiint_D dV = \int_0^1 \int_{-\pi/2}^{\pi/2} \int_0^{2\pi} \left| \frac{\partial(x, y, z)}{\partial(u, v, w)} \right| du dv dw = \int_0^1 \int_{-\pi/2}^{\pi/2} \int_0^{2\pi} \frac{\sin^2 2v}{2} du dv dw
= \pi \int_{-\pi/2}^{\pi/2} \frac{1 - \cos 4v}{2} dv = \frac{\pi^2}{2}.$$

2. Since

$$\vec{r}_u(u,v) = (-\cos v \sin u, \cos v \cos u, 0),$$

$$\vec{r}_v(u,v) = (-\sin v \cos u, -\sin v \sin u, 2\cos 2v),$$

we find that

$$(\vec{r}_u \times \vec{r}_v)(u,v) = (2\cos 2v\cos v\cos u, 2\cos 2v\cos v\sin u, \sin v\cos v)$$

and

$$\|\vec{r}_{u} \times \vec{r}_{v}\| = \sqrt{4\cos^{2}2v\cos^{2}v + \sin^{2}v\cos^{2}v} = \cos v\sqrt{4\cos^{2}2v + \sin^{2}v}.$$

3. At (x, y, z) = (1, 0, 0), the corresponding (u, v) = (0, 0). Since $\mathbf{N}(1, 0, 0) = (1, 0, 0)$, and

$$\frac{\overrightarrow{r}_u \times \overrightarrow{r}_v}{\|\overrightarrow{r}_u \times \overrightarrow{r}_v\|}(0,0) = (1,0,0).$$

Therefore, $\frac{\overrightarrow{r}_u \times \overrightarrow{r}_v}{\|\overrightarrow{r}_u \times \overrightarrow{r}_v\|}$ is compatible with the outward pointing orientation.

4. The flux integral $\iint_{\Sigma} \vec{F} \cdot \vec{N} dS$ can be computed by

$$\iint_{R} \vec{F}(\vec{r}(u,v)) \cdot (\vec{r}_{u} \times \vec{r}_{v})(u,v) du dv
= \int_{-\pi/2}^{\pi/2} \int_{0}^{2\pi} (2\cos 2v \cos^{2} v \cos^{2} u + 2\cos 2v \cos^{2} v \sin^{2} u) du dv
= 4\pi \int_{-\pi/2}^{\pi/2} \cos 2v \cos^{2} v dv = 4\pi \int_{-\pi/2}^{\pi/2} \cos 2v \frac{1 + \cos 2v}{2} dv
= 2\pi \int_{-\pi/2}^{\pi/2} (\cos 2v + \frac{1 + \cos 4v}{2}) dv = \pi^{2}.$$

5. By the divergence theorem,

$$\iint_{\Sigma} \vec{F} \cdot \vec{N} dS = \iiint_{D} \operatorname{div} \vec{F} dV = 2 \iiint_{D} dV = 2 \times \frac{\pi^{2}}{2} = \pi^{2}.$$

Problem 4. Complete the following.

1. (10%) Suppose f is a scalar function which has continuous partial derivatives. Use the divergence theorem to show that

$$\iiint_{D} \frac{\partial f}{\partial y}(x, y, z)dV = \iint_{\Sigma} f(x, y, z) N_{2}(x, y, z)dS, \qquad (0.1)$$

where Σ is the boundary of D (or D is enclosed by Σ), and $\overrightarrow{N} = (N_1, N_2, N_3)$ is the outward pointing unit normal to Σ .

2. (10%) Use (0.1) to compute

$$\iint_{\Sigma} y^2 e^z dS \,,$$

where Σ is the sphere $x^2 + y^2 + z^2 = 9$. You can use the formula $\int xe^{ax}dx = (\frac{x}{a} - \frac{1}{a^2})e^{ax}$ to reduce the computation.

Solution:

(a) Let $\vec{F}(x, y, z) = (0, f(x, y, z), 0)$. By the divergence theorem,

$$\iint_{\Sigma} f(x, y, z) n_2(x, y, z) dS = \iint_{\Sigma} \vec{F}(x, y, z) \cdot \vec{n}(x, y, z) dS = \iiint_{D} \operatorname{div} \vec{F}(x, y, z) dV$$
$$= \iiint_{D} \frac{\partial f}{\partial y}(x, y, z) dV.$$

(b) On the sphere $x^2 + y^2 + z^2 = 9$, the outward point normal vector $\vec{n}(x, y, z) = \frac{1}{3}(x, y, z)$. Therefore, by (0.1) (with $f(x, y, z) = 3ye^z$ in mind),

$$\iint_{\Sigma} y^{2}e^{z}dS = \iint_{\Sigma} 3ye^{z}\frac{y}{3}dS = \iiint_{D} \frac{\partial}{\partial y}(3ye^{z})dV = \int_{0}^{3} \int_{0}^{2\pi} \int_{0}^{\pi} 3e^{\rho\cos\phi}\rho^{2}\sin\phi d\phi d\theta d\rho
= 3 \int_{0}^{3} \int_{0}^{2\pi} -\rho e^{\rho\cos\phi}\Big|_{\phi=0}^{\phi=\pi} d\theta d\rho
= 6\pi \int_{0}^{3} (\rho e^{\rho} - \rho e^{-\rho})d\rho
= 6\pi (\rho - 1)e^{\rho}\Big|_{\rho=0}^{\rho=3} - 6\pi (-\rho - 1)e^{-\rho}\Big|_{\rho=0}^{\rho=3}
= 12\pi (e^{3} + 2e^{-3}).$$

Problem 5. Let C be a smooth curve parametrized by

$$\vec{r}(t) = (\cos t \sin t, \sin t \sin t, \cos t), \qquad -\frac{\pi}{2} \le t \le \frac{\pi}{2}.$$

1. (10%) Show that the corresponding curve of \vec{r} (t) on $\theta\phi$ -plane consists of two line segments L_1 and L_2 given by

$$L_1 = \left\{ (\theta, \phi) \mid \theta = \phi, 0 \le \phi \le \frac{\pi}{2} \right\}, \quad L_2 = \left\{ (\theta, \phi) \mid \theta = \pi - \phi, 0 \le \phi \le \frac{\pi}{2} \right\}.$$

- 2. (10%) Plot L_1 and L_2 on the $\theta\phi$ -plane. The curve C divides the unit sphere into two parts, and let Σ be the part with smaller area. Identify the corresponding region of Σ on $\theta\phi$ -plane.
- 3. (15%) Find the surface area of Σ .

- 4. (20%) Let $\vec{F}(x,y,z) = (y,-x,0)$ be a vector field in the space. Compute the line integral $\oint_C \vec{F} \cdot d\vec{r}$ by the definition of the line integral.
- 5. (20%) Use Stokes's Theorem to find the line integral $\oint_C \vec{F} \cdot d\vec{r}$.

Solution:

- 1. Each point \vec{r} (t) of C corrsponds to a point $(\theta(t), \phi(t))$ in the $\theta\phi$ -plane. Let C_1 be parametrized by \vec{r}_1 (t) $=\vec{r}$ (t) with $0 \le t \le \frac{\pi}{2}$, and C_2 be parametrized by \vec{r}_2 (t) $=\vec{r}$ (t) with $-\frac{\pi}{2} \le t \le 0$. For points with $0 \le t \le \frac{\pi}{2}$, $\cos t = \cos \phi$ implies $t = \phi$, and hence $\cos \theta \cos \phi = \cos t \sin t$ and $\sin \theta \sin \phi = \sin t \sin t$ imply $\phi = \theta$. Therefore, C_1 corresponds to the curve $\theta = \phi(=t)$, $0 \le \phi \le \frac{\pi}{2}$. For C_2 , since $-\frac{\pi}{2} \le t \le 0$, $\cos \phi = \cos t$ implies $\phi = -t$, and hence $\cos \theta \cos \phi = \cos t \sin t$ and $\sin \theta \sin \phi = \sin t \sin t$ imply $\theta + \phi = \pi$. Therefore, C_2 corresponds to the curve $\theta + \phi = \pi$, $0 \le \phi \le \frac{\pi}{2}$.
- 2. Let (x, y, z) be the point corresponds to $(\theta, \phi) = (\pi/2, \pi/4)$. This point belongs to Σ , and locates inside the triangle T formed by L_1 , L_2 and θ -axis. Therefore, Σ corresponds to T and is plotted as follows.

3. The area of Σ is

$$\int_0^{\frac{\pi}{2}} \int_{\phi}^{\pi-\phi} \sin \phi d\theta d\phi = \pi - 2.$$

4. Since $\vec{r}'(t) = (\cos^2 t - \sin^2 t, 2\sin t \cos t, -\sin t)$. By the definition of the line integral,

$$\int_{C} \vec{F} \cdot \vec{T} ds = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (\sin t \sin t, -\cos t \sin t, 0) \cdot (\cos^{2} t - \sin^{2} t, 2 \sin t \cos t, -\sin t) dt$$

$$= \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left[\sin^{2} t \cos^{2} t - \sin^{4} t - 2 \cos^{2} t \sin^{2} t \right] dt$$

$$= -\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^{2} t dt = -\frac{\pi}{2}.$$

5. $\operatorname{curl} \vec{F}(x, y, z) = (0, 0, -2)$. By the Stokes theorem,

$$\int_{C} \overrightarrow{F} \cdot \overrightarrow{T} ds = \iint_{\Sigma} (0, 0, -2) \cdot \overrightarrow{N} dS = -2 \int_{0}^{\frac{\pi}{2}} \int_{\phi}^{\pi - \phi} \sin \phi \cos \phi d\theta d\phi$$

$$= -\int_{0}^{\frac{\pi}{2}} (\pi - 2\phi) \sin 2\phi d\phi$$

$$= \left[\frac{\pi}{2} \cos 2\phi - \phi \cos 2\phi + \frac{1}{2} \sin 2\phi \right]_{\phi = 0}^{\phi = \frac{\pi}{2}}$$

$$= -\frac{\pi}{2}.$$