Calculus II Midterm 1
National Central University, Spring 2012, Apr. 5, 2012
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Problem 1. (10%) Evaluate the definite integral / ' ————dx.
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Sol. Let u = 2x. Then du = 2dx; thus
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By the change of variable t = tan —, we find that
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Problem 2. (10%) Find all o € R so that the improper integral / ~dz is conver-
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gent.

Sol. Let ¢ =1+ z. Then
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where we use the change of variable u = In y to conclude the last equality. Since lim,_,,, e*u™® = oo
for all a > 0, the improper integral is divergent (to oo) for all a > 0.
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Problem 3. (10%) Let f®) denote d—aj’:’ the k-th derivative of f, and f(® = f. Suppose that
f® :[=1,1] = R is continuous for all £ € NU {0}. Show that
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by the integration by parts formula and induction.

Proof. By the fundamental theorem of Calculus and integration by parts,

h
T / f'(@)dz = £(0) + (x — h) ()

— F(0) + hy'(0) - / (z — h)f"(x)dz.

This prove the case n = 1.



Integrating by parts again suggests that
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Now suppose that (?7) holds for n = N. Then the identity above implies that
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This implies that (1) also holds for n = N +1. Therefore, (??) holds for all n € NU{0} by induction.
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Problem 4. Let R be the region bounded by the circle 7 = 1 and outside the lemniscate r* =
—2cos 26, and is located on the right half plane (see the shaded region in the graph).

Y

r2 = —2cos?20

1. (8%) Find the points of intersection of the circle r = 1 and the lemniscate r? = —2 cos 26.

1
2. (7%) Show that the straight line z = 5 is tangent to the lemniscate at the points of intersection

on the right half plane.
3. (10%) Find the area of R.

4. Find the volume of the solid of revolution obtained by rotating R about the z-axis by complete

the following:

(a) (5%) Suppose that (z,y) is on the lemniscate. Then (x,y) satisfies
y' +a(z)y” +b(z) =0 (2)

for some functions a(x) and b(z). Find a(z) and b(x).



Sol.

(b) (3%) Solving (2), we find that y* = c(x), where c(z) = c12? + ¢ + c31/1 — 422 for some

constants ¢, ¢ and c3. Then the volume of interests can be computed by

3 1
I= 7r/ c(x)dx + 7T/ d(z)dz.
0 ;

Compute /: [d(:v) —(1- xQ)}dz.

(¢) (12%) Evaluate I by first computing the integral / ’ V1 —422dz, and then find 1.
0

. (10%) Find the area of the surface of revolution obtained by rotating the boundary of R about

the z-axis.
2m 4
. Let 2cos20 = —1, then 0 = g % % 5% thus the points of intersection are
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. On the lemniscate, r = £1/—2 cos 20; thus

- = |r — i = S'icosé’—\/—cos%siné’ =0.
du ['(9)0059 r(é’)smé’” \/5[ n 20 ” _

dfle=7 0=3 v/ — cos 20 =
dx 1. .
Similar computation shows that 7 = 0; thus x = 5 is tangent to the lemniscate.
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The area of the shaded region is
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. If (x,y) is on the lemniscate, then
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which implies that
vt +2(2* — Dy? + ' + 22 = 0.

Therefore,

y? = —(2* = 1) + /(22 — (244 222) =1 — 2* + V1 — 4a2.



Therefore, the volume of the solid of revolution obtained by rotating R about the y-axis is
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On the other hand, the integral can be evaluated by making a change of variable z = Y.
1 1
/\/1 — 422 dx = 3 /00829d9 =1 / (1 + cos26)do
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= Z(sin_12x+2x\/1 — 4x2) +C.
Therefore,
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and the volume of the solid of revolution obtained by rotating R about the z-axis is 3 + 3

. There are two parts of the surface: one from rotating the lemniscate and the other from rotating

the sphere. The area obtained by rotating the part of the lemniscate is
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The part obtained by rotating the part of the sphere is

3 o=2
/27r|y|ds = 27r/ sin 0v12 + 12d6 = 27(— cos 0) , P =
0 —0
The total area is then (2v/2 — 1)x. O
Problem 5. (15%) Parametrize the curve
.1 t . —1 4 —1 1
r =r(t) =sin i+tan™" tj+ cos tel-1,1],
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in the same orientation in terms of arc-length measured from the point where ¢t = 0.



Sol. By

2t
v1+t e |

d . t B 1
dt Vite  [f{_ =~ 1+¢2 I
1-+¢2
d 4 1 —1 _\/117 1
— CoS = = ,
dt VItE i 1+ 148
1+t
—tan 't = 1
dt 1+ t2’

we compute the arc-length function as

1 ) »
/ \/1—|—t'2 1—|—t'2) + (1—|—t'2 \/7/ e dt :\/gtan t.

s
Therefore, plugging in t = tan —, b
plugging V3 Y
sin~! i tan~ 't = cos ™! ! i
1 = = e =
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we find that the required arc-length parametrization is
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