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Problem 1. (10%) Evaluate the definite integral

∫ π

4

0

1

2 + sin 2x
dx.

Sol. Let u = 2x. Then du = 2dx; thus

∫ π

4

0

1

2 + sin 2x
dx =

1

2

∫ π

2

0

1

2 + sin u
du.

By the change of variable t = tan
u

2
, we find that

∫ π

4

0

1

2 + sin 2x
dx =

1

2

∫ 1

0

1

2 + 2t
1+t2

2dt

1 + t2
=

1

2

∫ 1

0

1

t2 + t+ 1
dt

=
1

2

∫ 1

0

1
(

t+ 1
2

)2
+
(

√
3
2

)2dt =
1√
3
tan−1 2t+ 1√

3

∣

∣

∣

t=1

t=0

=
1√
3

[

tan−1
√
3− tan−1 1√

3

]

=
1√
3

[π

3
− π

6

]

=
π

6
√
3
. �

Problem 2. (10%) Find all α ∈ R so that the improper integral

∫ ∞

e2

1

x
[

ln ln(1 + x)
]αdx is conver-

gent.

Sol. Let ey = 1 + x. Then
∫ ∞

e2

1

x
[

ln ln(1 + x)
]αdx =

∫ ∞

ln(1+e2)

eydy

(ey − 1)(ln y)α
≥

∫ ∞

ln(1+e2)

dy

(ln y)α
=

∫ ∞

ln ln(1+e2)

eudu

uα
,

where we use the change of variable u = ln y to conclude the last equality. Since limu→∞ euu−α = ∞
for all α > 0, the improper integral is divergent (to ∞) for all α > 0.

Problem 3. (10%) Let f (k) denote
dkf

dxk
, the k-th derivative of f , and f (0) ≡ f . Suppose that

f (k) : [−1, 1] → R is continuous for all k ∈ N ∪ {0}. Show that

f(h) = f(0) + hf ′(0) +
h2

2
f ′′(0) + · · ·+ hn

n!
f (n)(0) + (−1)n

∫ h

0

(x− h)n

n!
f (n+1)(x) dx (1)

by the integration by parts formula and induction.

Proof. By the fundamental theorem of Calculus and integration by parts,

f(h) = f(0) +

∫ h

0

f ′(x)dx = f(0) + (x− h)f ′(x)
∣

∣

∣

x=h

x=0
−
∫ h

0

(x− h)f ′′(x)dx

= f(0) + hf ′(0)−
∫ h

0

(x− h)f ′′(x)dx.

This prove the case n = 1.



Integrating by parts again suggests that

∫ h

0

(x− h)N

N !
f (N+1)(x)dx =

(x− h)N+1

(N + 1)!
f (N+1)(x)

∣

∣

∣

x=h

x=0
−

∫ h

0

(x− h)N+1

(N + 1)!
f (N+2)(x)dx

=
(−1)N+2hN+1

(N + 1)!
f (N+1)(0)−

∫ h

0

(x− h)N+1

(N + 1)!
f (N+2)(x)dx.

Now suppose that (??) holds for n = N . Then the identity above implies that

f(h) = f(0) + hf ′(0) +
h2

2
f ′′(0) + · · ·+ hN

N !
f (N)(0) + (−1)N

∫ h

0

(x− h)N

N !
f (N+1)(x) dx

= f(0) + hf ′(0) +
h2

2
f ′′(0) + · · ·+ hN

N !
f (N)(0) +

hN+1

(N + 1)!
f (N+1)(0)

+ (−1)N+1

∫ h

0

(x− h)N+1

(N + 1)!
f (N+2)(x)dx.

This implies that (1) also holds for n = N+1. Therefore, (??) holds for all n ∈ N∪{0} by induction.

�

Problem 4. Let R be the region bounded by the circle r = 1 and outside the lemniscate r2 =

−2 cos 2θ, and is located on the right half plane (see the shaded region in the graph).

y

r = 1

r2
= −2 cos 2θ

x

1. (8%) Find the points of intersection of the circle r = 1 and the lemniscate r2 = −2 cos 2θ.

2. (7%) Show that the straight line x =
1

2
is tangent to the lemniscate at the points of intersection

on the right half plane.

3. (10%) Find the area of R.

4. Find the volume of the solid of revolution obtained by rotating R about the x-axis by complete

the following:

(a) (5%) Suppose that (x, y) is on the lemniscate. Then (x, y) satisfies

y4 + a(x)y2 + b(x) = 0 (2)

for some functions a(x) and b(x). Find a(x) and b(x).



(b) (3%) Solving (2), we find that y2 = c(x), where c(x) = c1x
2 + c2 + c3

√
1− 4x2 for some

constants c1, c2 and c3. Then the volume of interests can be computed by

I = π

∫ 1

2

0

c(x)dx+ π

∫ 1

1

2

d(x)dx.

Compute

∫ 1

1

2

[

d(x)− (1− x2)
]

dx.

(c) (12%) Evaluate I by first computing the integral

∫ 1

2

0

√
1− 4x2dx, and then find I.

5. (10%) Find the area of the surface of revolution obtained by rotating the boundary of R about

the x-axis.

Sol.

1. Let 2 cos 2θ = −1, then θ =
π

3
,
2π

3
,
4π

3
,
5π

3
; thus the points of intersection are

(1

2
,

√
3

2

)

,
(1

2
,−

√
3

2

)

,
(

− 1

2
,−

√
3

2

)

,
(

− 1

2
,

√
3

2

)

.

2. On the lemniscate, r = ±
√
−2 cos 2θ; thus

dx

dθ

∣

∣

∣

θ=π

3

=
[

r ′(θ) cos θ − r(θ) sin θ
]
∣

∣

∣

θ=π

3

=
√
2
[ sin 2θ√

− cos 2θ
cos θ −

√
− cos 2θ sin θ

]
∣

∣

∣

θ=π

3

= 0.

Similar computation shows that
dx

dθ

∣

∣

∣

θ= 2π

3

= 0; thus x =
1

2
is tangent to the lemniscate.

3. The area of the shaded region is

2× 1

2

[

∫ π

4

0

12dθ +

∫ π

3

π

4

(1 + 2 cos 2θ)dθ
]

=
π

4
+
(

θ + sin 2θ
)

∣

∣

∣

θ=π

3

θ=π

4

=
π

3
+

√
3

2
− 1.

4. If (x, y) is on the lemniscate, then

x2 + y2 = −2
(

2
x2

x2 + y2
− 1

)

=
2(y2 − x2)

x2 + y2

which implies that

y4 + 2(x2 − 1)y2 + x4 + 2x2 = 0.

Therefore,

y2 = −(x2 − 1) +
√

(x2 − 1)2 − (x4 + 2x2) = 1− x2 +
√
1− 4x2.



Therefore, the volume of the solid of revolution obtained by rotating R about the y-axis is

π

∫ 1

2

0

[

1− x2 +
√
1− 4x2

]

dx+ π

∫ 1

1

2

(1− x2)dx

= π

∫ 1

2

0

√
1− 4x2 dx+ π

∫ 1

0

(1− x2)dx

= π

∫ 1

2

0

√
1− 4x2 dx+ π

(

x− x3

3

)
∣

∣

∣

x=1

x=0
= π

∫ 1

2

0

√
1− 4x2 dx+

2π

3
.

On the other hand, the integral can be evaluated by making a change of variable x =
sin θ

2
:

∫ √
1− 4x2 dx =

1

2

∫

cos2 θdθ =
1

4

∫

(

1 + cos 2θ
)

dθ

=
1

4
θ +

1

8
sin 2θ + C =

1

4

(

θ + sin θ cos θ
)

+ C

=
1

4

(

sin−1 2x+ 2x
√
1− 4x2

)

+ C.

Therefore,

∫ 1

2

0

√
1− 4x2 dx =

π

8

and the volume of the solid of revolution obtained by rotating R about the x-axis is
2π

3
+

π2

8
.

5. There are two parts of the surface: one from rotating the lemniscate and the other from rotating

the sphere. The area obtained by rotating the part of the lemniscate is
∫

2π|y|ds =
∫

2π|r sin θ|
√
r′2 + r2dθ

= 2π

∫ π

3

π

4

√
−2 cos 2θ sin θ

√

(
√
−2 cos 2θ

′
)2 + (−

√
2 cos 2θ)2dθ

= 4π

∫ π

3

π

4

√
− cos 2θ sin θ

1√
− cos 2θ

dθ

= 4π(− cos θ)
∣

∣

∣

θ=π

3

θ=π

4

= 2π(
√
2− 1).

The part obtained by rotating the part of the sphere is

∫

2π|y|ds = 2π

∫ π

3

0

sin θ
√
1′2 + 12dθ = 2π(− cos θ)

∣

∣

∣

θ=π

3

θ=0
= π.

The total area is then (2
√
2− 1)π. �

Problem 5. (15%) Parametrize the curve

r = r(t) = sin−1 t√
1 + t2

i+ tan−1 tj + cos−1 1√
1 + t2

k, t ∈ [−1, 1],

in the same orientation in terms of arc-length measured from the point where t = 0.



Sol. By

d

dt
sin−1 t√

1 + t2
=

1
√

1− t2

1+t2

√
1 + t2 − t2√

1+t2

1 + t2
=

1

1 + t2
,

d

dt
cos−1 1√

1 + t2
=

−1
√

1− 1
1+t2

− t√
1+t2

1 + t2
=

1

1 + t2
,

d

dt
tan−1 t =

1

1 + t2
,

we compute the arc-length function as

s(t) =

∫ t

0

√

1

(1 + t′2)2
+

1

(1 + t′2)2
+

1

(1 + t′2)2
dt′ =

√
3

∫ t

0

1

1 + t′2
dt′ =

√
3 tan−1 t.

Therefore, plugging in t = tan
s√
3
, by

sin−1 t√
1 + t2

= tan−1 t = cos−1 1√
1 + t2

=
s√
3
,

we find that the required arc-length parametrization is

r1 = r1(s) =
s√
3
i+

s√
3
j +

s√
3
k, s ∈

[

−
√
3π

4
,

√
3π

4

]

.


