
Calculus II Midterm 2
National Central University, Summer Session 2012, Aug. 21, 2012

Problem 1. Parametrize the curve

⇀
r(t) = (e2t cos 2t, 2, e2t sin 2t) = e2t cos 2t

⇀

i +2
⇀

j +e2t sin 2t
⇀

k

with respect to the arc-length measured from the point where t = 0 in the direction of increasing t,

by completing the following:

1. (5%) Compute
⇀
r

′
(t).

2. (10%) Compute the arc-length function s(t).

3. (10%) Invert the arc-length function and derive the arc-length parametrization of
⇀
r(t).

Sol:

1. By the definition of the derivative of a vector-valued function,

⇀
r

′
(t) = (2e2t(cos 2t− sin 2t), 0, 2e2t(sin 2t+ cos 2t))

= 2e2t(cos 2t− sin 2t)
⇀

i +2e2t(sin 2t+ cos 2t)
⇀

k .

2. Since | ⇀
r

′
(t)| = 2e2t

√
(cos 2t− sin 2t)2 + (sin 2t+ cos 2t)2 = 2

√
2e2t, the arc-length function

s(t) is

s(t) =

∫ t

0

| ⇀
r

′
(t′)| dt′ = 2

√
2

∫ t

0

e2t
′
dt′ =

√
2e2t

′
∣∣∣t′=t

t′=0
=

√
2(e2t − 1).

3. Let s =
√
2(e2t − 1). Then t =

1

2
ln
( s√

2
+ 1

)
=

1

2
ln

s+
√
2√

2
. Therefore, the arc-length

parametrization of
⇀
r(t) is

⇀
r 1(s) =

⇀
r
(1
2
ln

s+
√
2√

2

)
=

(s+√
2√

2
cos ln

s+
√
2√

2
, 2,

s+
√
2√

2
sin ln

s+
√
2√

2

)
.

Problem 2. (15%) Let S be the graph of f(x, y) = x2− 4xy− 2y2+12x− 12y− 1. What horizontal

plane is tangent to the surface S and what is the point of tangency.

Sol: Since fx(x, y) = 2x−4y+12 and fy(x, y) = −4x−4y−12, (x, y) = (−4, 1) is the only critical point

of f . At this point, the tangent plane is horizontal, and the tangent plane is z = f(−4, 1) = −31. �

Problem 3. Let f(x, y) =


xy(x2 − y2)

x2 + y2
if (x, y) ̸= (0, 0),

0 if (x, y) = (0, 0).

1. (12%) Find the first partial derivative fx and fy for all (x, y) ∈ R2.



2. (10%) Show that f is differentiable at the origin (0, 0).

3. (8%) Show that fxy(0, 0) ̸= fyx(0, 0).

4. (5%) Let
⇀
u=

(√2

2
,

√
2

2

)
. Compute the directional derivative of fx at (0, 0) in the direction

⇀
u.

Proof.

1. If (x, y) ̸= (0, 0), by the quotient rule we find that

fx(x, y) =

[
y(x2 − y2) + 2x2y

]
(x2 + y2)− 2x2y(x2 − y2)

(x2 + y2)2

=
y(x2 − y2)(x2 + y2) + 2x2y

[
(x2 + y2)− (x2 − y2)

]
(x2 + y2)2

=
x4y − y5 + 4x2y3

(x2 + y2)2
.

On the other hand,

fx(0, 0) = lim
h→0

f(h, 0)− f(0, 0)

h
= lim

h→0

0− 0

h
= 0.

Therefore,

fx(x, y) =


x4y − y5 + 4x2y3

(x2 + y2)2
if (x, y) ̸= (0, 0),

0 if (x, y) = (0, 0).

Since f(x, y) = −f(y, x), fy(x, y) = −fx(y, x); thus

fy(x, y) =


−xy4 + x5 − 4x3y2

(x2 + y2)2
if (x, y) ̸= (0, 0),

0 if (x, y) = (0, 0).

2. In order to show that f is differentiable at (0, 0), we need to compute the limit

lim
(h,k)→(0,0)

f(h, k)−
[
f(0, 0) + fx(0, 0)h+ fy(0, 0)

]
√
h2 + k2

= 0.

Nevertheless, letting h = r cos θ and k = r sin θ, we find that

lim
(h,k)→(0,0)

f(h, k)−
[
f(0, 0) + fx(0, 0)h+ fy(0, 0)

]
√
h2 + k2

= lim
r→0

f(r cos θ, r sin θ)

r

= lim
r→0

r4(cos3 θ sin θ−cos θ sin3 θ)
r2

r
= lim

r→0
r(cos3 θ sin θ − cos θ sin3 θ) = 0.

3. By definition,

fxy(0, 0) = lim
k→0

fx(0, k)− fx(0, 0)

k
= lim

k→0

−k5/k4

k
= −1,

while on the other hand,

fyx(0, 0) = lim
h→0

fy(h, 0)− fy(0, 0)

h
= lim

h→0

h5/h4

h
= 1.

As a consequence, fxy(0, 0) ̸= fyx(0, 0).



4. By definition,

(D⇀
u
fx)

(√2

2
,

√
2

2

)
= lim

h→0

fx
(
h
√
2
2
, h

√
2
2

)
− fx(0, 0)

h
= lim

h→0

2h5(
√
2
2
)3

h5
=

√
2

2
. �

Problem 4. Let C be the plane curve
{
(x, y) ∈ R2

∣∣∣ x3 + 2y3 = −3xy
}
(see figure 1 for reference).

y

x3 + 2y3 = −3xy

xO

Figure 1

1. (10%) Find the line tangent to the curve C at the point (2,−1).

2. (10%) Find the point at which the line tangent to the curve C is horizontal.

3. (10%) Find the point at which the line tangent to the curve C is vertical.

Sol: Let F (x, y) = x3 + 2y3 + 3xy. By the implicit differentiation,

dy

dx
= −Fx

Fy

= −3x2 + 3y

6y2 + 3x
= − x2 + y

2y2 + x
.

1. At (x, y) = (2,−1),
dy

dx
= −4− 1

2 + 2
= −3

4
which is the slope of the tangent line. Therefore, the

tangent line at (2,−1) is

y = −3

4
(x− 2)− 1 = −3

4
x+

1

2
.

2. If the tangent line at (a, b) is horizontal, then a2 + b = 0. Moreover, (a, b) being on the curve

C suggests that a3 + 2b3 + 3ab = 0. Therefore, a3 − 2a6 − 3a3 = 0 which implies that a = 0 or

a = −1. Since (according to the figure) there is no tangent line at the origin, a = −1 (and thus

b = −a2 = −1). Therefore, the point at which the line tangent to C is horizontal is (−1,−1).

3. If the tangent line at (a, b) is vertical, then 2b2 + a = 0. Moreover, (a, b) being on the curve

C suggests that a3 + 2b3 + 3ab = 0. Therefore, −8b6 + 2b3 − 6b3 = 0 which implies that b = 0

or b = − 1
3
√
2
. Since (according to the figure) there is no tangent line at the origin, b = − 1

3
√
2

(and thus a = −2b2 = − 3
√
2). Therefore, the point at which the line tangent to C is vertical is(

− 3
√
2,− 1

3
√
2

)
.



Problem 5. Use the chain rule to compute the following partial derivatives.

1. (15%) Let f(x, y) =

∫ x2+y

x−y

cos(t2) dt. Find fxy.

2. (15%) Let z = sin−1(x− y), and x = s2 + t2 and y = 1− 2st. Show that

∂z

∂t
= − 2√

2− (s+ t)2
if −

√
2 < s+ t < 0.

Sol:

1. Let F (x) =

∫ x

a

cos(t2) dt. Then f(x, y) = F (x2 + y)− F (x− y). By the chain rule,

fx(x, y) =
∂

∂x
F (x2 + y)− ∂

∂x
F (x− y)

= F ′(x2 + y) · ∂(x
2 + y)

∂x
− F ′(x− y) · ∂(x− y)

∂x
= 2x cos(x2 + y)2 − cos(x− y)2,

where we use the fundamental theorem of calculus to obtain F ′(x) = cos(x2) to proceed the

computation. Therefore,

fxy(x, y) = −2x sin(x2 + y)2 · ∂(x
2 + y)2

∂y
+ sin(x− y)2 · ∂(x− y)2

∂y

= −4x(x2 + y) sin(x2 + y)2 − 2(x− y) sin(x− y)2.

2. Since
d

dx
sin−1 x =

1√
1− x2

,

∂z

∂x
=

1√
1− (x− y)2

and
∂z

∂y
=

−1√
1− (x− y)2

Therefore, for s+ t < 0,

∂z

∂t
=

∂z

∂x

∂x

∂t
+

∂z

∂y

∂y

∂t

=
2t√

1− (s2 + t2 − 1 + 2st)2
− −2s√

1− (s2 + t2 − 1 + 2st)2

=
2(s+ t)√

12 − [(s+ t)2 − 1]2
=

2(s+ t)√
(s+ t)2[2− (s+ t)2]

=
2(s+ t)

|s+ t|
√

2− (s+ t)2
= − 2√

2− (s+ t)2
.

Problem 6. (15%) Show that the equation of the tangent plane to the elliptic paraboloid
z

c
=

x2

a2
+
y2

b2
at the point (x0, y0, z0) can be written as

2xx0

a2
+

2yy0
b2

=
z + z0

c
. (0.1)



Proof. Let F (x, y, z) =
x2

a2
+

y2

b2
− z

c
. Since

(∇F )(x, y, z) =
(2x
a2

,
2y

b2
,−1

c

)
,

the normal direction at the point (x0, y0, z0) is (∇F )(x0, y0, z0) =
(2x0

a2
,
2y0
b2

,−1

c

)
; thus the tangent

plane at (x0, y0, z0) is (2x0

a2
,
2y0
b2

− 1

c

)
· (x− x0, y − y0, z − z0) = 0

or

2x0x

a2
+

2y0y

b2
− z

c
=

2x2
0

a2
+

2y20
b2

− z0
c
. (0.2)

Since (x0, y0, z0) is on the elliptic paraboloid,

x2
0

a2
+

y20
b2

− z0
c

= 0;

thus (0.2) implies that the tangent plane at (x0, y0, z0) is given by (0.1). �


