
Calculus II Midterm 3
National Central University, Summer Session 2012, Aug. 28, 2012

Problem 1. (20%) Find the local maximum and minimum values and saddle points of the function

f(x, y) = ey(y2 − x2).

Sol: Since fx(x, y) = −2xey and fy(x, y) = ey(y2 − x2) + 2yey = ey(y2 + 2y − x2), the critical points

of f are (0, 0) and (0,−2). Moreover, since

fxx(x, y) = −2ey, fxy(x, y) = fyx(x, y) = −2xey,

fyy(x, y) = ey(y2 + 2y − x2) + ey(2y + 2) = ey(y2 + 4y + 2− x2),

we have
fxx(0, 0) = −2, fxy(0, 0) = fyx(0, 0) = 0, fyy(0, 0) = 2;

fxx(0,−2) = −2e−2, fxy(0,−2) = fyx(0,−2) = 0, fyy(0,−2) = −2e−2.

Let D(x, y) = fxx(x, y)fyy(x, y)− fxy(x, y)
2,

1. Since D(0, 0) < 0, (0, 0) is a saddle point.

2. Since D(0,−2) = 4e−4 > 0 and fxx(0,−2)< 0, f attains its local maximum f(0,−2) = 4e−2 at

(0,−2).

3. Since there is no other critical point, there is no local minimum of f . �

Problem 2. (20%) Find the extreme values of f(x, y, z) = x+2y subject to the constraints x+y+z =

1 and y2 + z2 = 4.

Sol: Let g(x, y, z) = x + y + z − 1 and h(x, y, z) = y2 + z2 − 4. Suppose that f attains its extreme

value (subject to the constraints) at (x, y, z). Then there exist two constants λ and µ such that

(∇f)(x, y, z) = λ(∇g)(x, y, z) + µ(∇h)(x, y, z),

g(x, y, z) = 0, h(x, y, z) = 0

or equivalently,

1 = λ, (0.1a)

2 = λ+ 2µy, (0.1b)

0 = λ+ 2µz, (0.1c)

x+ y + z = 1, (0.1d)

y2 + z2 = 4. (0.1e)

Using (0.1a) in (0.1b,c), we find that

2µy = −2µz = 1

which implies that y = −z. Therefore, (0.1e) suggests that y = ±
√
2 and z = ∓

√
2; thus x = 1.



1. For (x, y, z) = (1,
√
2,−

√
2), f(1,

√
2,−

√
2) = 1 + 2

√
2.

2. For (x, y, z) = (1,−
√
2,
√
2), f(1,−

√
2,
√
2) = 1− 2

√
2.

Therefore, the maximum of f subject to g = h = 0 is 1 + 2
√
2, and the minimum is 1− 2

√
2. �

Problem 3. Suppose that the double integral

∫∫
D

3x2dA can be computed by the iterated integral∫ 2

1

∫ lnx

0

3x2dydx. Complete the following.

1. (10%) Directly evaluate the iterated integral.

2. (10%) Sketch the region of integration D.

3. (10%) Evaluate the double integral by reversing the order of integration.

Sol:

1. Integrating in y first:∫ 2

1

∫ lnx

0

3x2dydx =

∫ 2

1

3x2y
∣∣∣y=lnx

y=0
dx =

∫ 2

1

3x2 lnxdx .

Let u = ln x and dv = 3x2. Then du =
1

x
dx and v = x3. Integrating by parts,

∫ 2

1

3x2 lnxdx = x3 lnx
∣∣∣x=2

x=1
−

∫ 2

1

x3 1

x
dx = 8 ln 2− 1

3
x3
∣∣∣x=2

x=1
= 8 ln 2− 7

3
.

2. Since 1 ≤ x ≤ 2, 0 ≤ y ≤ lnx, the region is

O
x

y

y = log x

x = 2

(1,0)

(2,log 2)

3. y = ln x if and only if x = ey. Therefore,∫ 2

1

∫ lnx

0

3x2dydx =

∫ ln 2

0

x3
∣∣∣x=2

x=ey
dy =

∫ ln 2

0

8− e3ydy = (8y − 1

3
e3y)

∣∣∣y=ln 2

y=0

= 8 ln 2− 1

3
(e3 ln 2 − 1) = 8 ln 2− 7

3
.



Problem 4. (20%) Evaluate the double integral

∫∫
D

arctan
y

x
dA using the polar coordinate, where

D =
{
(x, y) | 1 ≤ x2 + y2 ≤ 4, 0 ≤ y ≤ x

}
.

Sol: The region D in polar coordinate can be written as D =
{
(r, θ)|1 ≤ r ≤ 2, 0 ≤ θ ≤ π

4

}
.

Therefore,∫∫
D

arctan
y

x
dA =

∫ π
4

0

∫ 2

1

arctan
r sin θ

r cos θ
rdrdθ =

∫ π
4

0

∫ 2

1

rθdrdθ =
(∫ π

4

0

θdθ
)(∫ 2

1

rdr
)
=

3π2

64
. �

Problem 5. (20%) The boundary of a lamina consists of the semicircles y =
√
1− x2 and y =√

4− x2 together with the portions of the x-axis that join them. Find the center of mass of the

lamina if the density ρ at (x, y) is given by ρ(x, y) =
√
x2 + y2.

Sol: Let D =
{
(r, θ)

∣∣ 1 ≤ r ≤ 2, 0 ≤ θ ≤ π
}
. Then the mass M is

M =

∫∫
D

ρ(x, y)dA =

∫ π

0

∫ 2

1

r2drdθ =
7π

3
,

and the moment about the x and y-axis are

Mx =

∫∫
D

yρ(x, y)dA =

∫ π

0

∫ 2

1

r3 sin θdrdθ =
15

2
,

My =

∫∫
D

xρ(x, y)dA =

∫ π

0

∫ 2

1

r3 cos θdrdθ = 0.

Therefore, the center of mass is
(My

M
,
Mx

M

)
=

(
0,

45

14π

)
. �

Problem 6. Let D be the intersection of two solid cylinders x2 + y2 ≤ 1 and x2 + z2 ≤ 1.

1. (20%) Find the volume of D.

2. (20%) Find the surface area of the boundary of D.

Sol: Let z = f(x, y) =
√
1− x2, and R =

{
(x, y)

∣∣ x2 + y2 ≤ 1
}
.

1. The volume of D is

2

∫∫
R

f(x, y)dA = 2

∫ 1

−1

∫ √
1−x2

−
√
1−x2

√
1− x2dydx = 2

∫ 1

−1

[√
1− x2 y

∣∣∣y=√
1−x2

y=−
√
1−x2

]
dx

= 4

∫ 1

−1

(1− x2)dx = 4
[
x− 1

3
x3
]∣∣∣x=1

x=−1
=

16

3
.

2. Since fx(x, y) = − x√
1− x2

and fy(x, y) = 0, we have

√
1 + fx(x, y)2 + fy(x, y)2 =

√
1 +

x2

1− x2
=

1√
1− x2

;

thus the surface area of the boundary of D is

4

∫∫
R

1√
1− x2

dA = 4

∫ 1

−1

∫ √
1−x2

−
√
1−x2

1√
1− x2

dydx = 4

∫ 1

−1

[ y√
1− x2

∣∣∣y=√
1−x2

y=−
√
1−x2

]
dx

= 4

∫ 1

−1

2dx = 16. �


