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8.5 Partial Fractions - % i» & ;\

(z) dx, where N, D are polynomial
D(x)

In this section, we are concerned with the integrals J

functions.

Write N(z) = D(z)Q(z) + R(z), where @), R are polynomials such that the degree of R

. . . N(z) R(x)
is less than the degree of D (such an R is called a remainder). Then Do) R(z) + D)

Since it is easy to find the indefinite integral of R, it suffices to consider the case when the

degree of the numerator is less than the degree of the denominator.

W.L.O.G., we assume that N and D no common factor, deg(N) < deg(D), and the

leading coefficient of D is 1. Since D is a polynomial with real coefficients,
D) = ([T@+a6)" ) (T]@ +ba+e)®).
j=1 j=1

where r;,d; € N, q; # g for all j # k, b; # by, or ¢; # ¢, for all j # k, and b? —4c; < 0 for all

—bj +iyfdc; — b2

2

1 < 7 < m. In other words, —g; are zeros of D with multiplicity r;, and
are zeros of D with multiplicity d;, here i = v/—1. Therefore,

i :i @ e ] Z::[Z xZJfb++OZ)] (85.1)

for some constants Ajy, Bjy and Cj,. Note that there are Z r;j+2 Z d; = deg(D) constants
7=1 7j=1

to be determined, and this can be done by the comparison of coefficients after the reduction
of common denominator.

522 + 20z +6 .
3 +212 +x
Note that x® 4+ 222 + 2 = x(2? + 22 + 1) = z(x + 1)?; thus to write the rational function

Example 8.24. Write in the form of (8.5.1).

above in the form of (8.5.1), we must have

502 +20x+6 A B C

w3 +222 4+ x+x+1+(x+1)2

for some constant A, B, C'.
Multiplying both sides of the equality above by x(x + 1)?, we find that

50242024+ 6 = A(z +1)* + Bx(z + 1) + Cz = (A+ B)2* + 2A+ B+ )z + A;



thus A, B, C satisfy

A+B=5
2A+B+C =20
A=6.

Therefore, A =6, B=—1 and C' = 9; thus
52420z +6 6 1 9

¥+ 22+ _:p_az+1+(m—|—1)2'

. 1 .
Example 8.25. Write e the form of (8.5.1).

Note that # + 1 = (22 + 2z + 1)(2® — v/22 + 1), s0
1 Ax+ B Cx+ D
¥ +1 - 22 20+ 1 +x2—\@x+1.
Multiplying both sides of the equality above by x* + 1, we have

1= (Az + B)(2* =2z + 1) + (Cz + D)(2® + 2z + 1)
= (A+ )2 4+ (—V2A 4+ B+ +v2C + D)2 + (A — 2B+ C +V2D)x + (B+ D)
thus comparing the coefficients, we find that A, B, C, D satisfy
A+C=0
—V2A+ B+V20+D =0
A—=\2B+C++2D=0
B+D=1.
Therefore, the first and the third equations imply that A = —C' and B = D; thus the second
and the fourth equation shows that A = —C' = 1 and B=D = % As a consequence,

2¢/2
11 z++/2 L V2 ]
w1 22l V2e 41 22— 2+ 1]
In order to find the integral of , by writing in the form of (8.5.1), it suffices
D(x) D(x)
. ngx + Cjz
to find the integral of @+ bat ) for
J Ajg doe — 1A_j££($+q])le—|—c 1f€7é ]_,
(z +¢;) Ayglnle+ql+C ifr=1.



Note that

Bjix + Cyy _ B_J 2x 4+ b; N (C'e B bijg) 1
(22 +bjz+c)f 2 (22+bjx+c;)t ! 2 (22 +bjx+¢)t
and
f 22 + b; gy — 1i£(as +bjx+c) T+ C ifl#ET,
(2% +bjz + ¢;)f In(2? + b +¢;)+C  if0=1;
thus to find the integral of @ fij: f]é)g, it suffices to compute J($2 —{—bjlw—i—cj)f dx.
dcj — bjz

which can be computed through the substitution x —

Example 8.26. Find the indefinite integral f

J

Example 8.27. Find the indefinite integral f

1 1 ! a

d:v:f d:r;:J =75
e = s
b,
2

J [<x ~ ﬁl)Q N aﬂz d(x — %) = al_%Jcos%_2udu.
2

= atanu:

t+ 1
Using the conclusion from Example 8.25, we find that
dx 1 r+/2 —r+4/2 } p
= x
zt 41 2[ .752—1—\@:15—1—1 22—+ 2 +1

J_.M_l. 20 — /2 }dm
2[ 2 224420 +1 2 22—+2x+1
V2 1 V2

Q\ff 2 P aviiil 2 2 —artl \Fx+1]dx
_ J 2 4+ /2 . V2 B 20 — /2 " V2

4\/§ $2+\/§x+1 (gj+%)2+(%)2 $2—\/§x+1 (1:_%)2_1_(1)2
1 [1 224422 +1
42 —V2z+1

+ 2arctan(v/2z + 1) + 2arctan(v2z — 1)] +C.

secx

dx.

Let uw = secx. Then du = sec x tan x; thus

J secx d:C_Jsecmtanxdx_J du _f du
tan®x tant z w12 ) (ut1)2(u—1)27




Write o 1)21(u —)e is the form of (8.5.1):

1 A N B N C N D
(u+1)2(u—12 u+l (u+1)?2 u—-1 (u—1)2"

where A, B, C, D satisfy
Aw+1)(u—1+Bu—12+Clu—1)(u+ 1>+ Du+1)>=1.
Therefore, A, B, C, D satisfy

A+C=0
-A+B+C+D=0
—A-2B-C+2D=0
A+B-C+D=1

1
which implies that A=B=-C=D = T As a consequence,

f(u—kl)g?u—l)g :if[uil—i_(u—il)Q_uil—i_u—ll)?}du

= i[lrﬂu—i—l] —%H—ln\u—u — uil] +C
1 u+1 2u
- Z[ln‘ui—l a u2—1} + 05
thus ) 1 9
J s e =g [m -] e
Example 8.28. Find the indefinite integral J(l_:ll‘n)“ where n is a positive integer.
)W

Let 1+ 27" =u". Then 2™ = and —z " 'dr = u" ! du; thus

u” —1

— n—2
fd—xlzf d 1:f ’ 1(—x_”_1)dx:—f “ du
(14 am)n (14 zn)n (142" u" —1

which is the indefinite integral of a rational function of u and we know how to compute it.

In particular, when n = 4,

u? u? 1 1 1 1

1
w -1 (u—1)u+1)w+1) 4 u—1 4 u+1+§'u2+1’




thus

Ju4u_1d“: Zln‘U—H—Z—llﬂ\u+1|+§arctanu—|—0

which further implies that

_4i 1
J(d—x Lo |l+= )1 ‘+—arctan[(1+x )Z]—i—C’.

1—|—a:4)i 4 T +zHi41

e The substitution of t = tang

In Section 5.3 we have introduced the substitution ¢ = tang to find the anti-derivative of

trigonometric functions. We recall that if ¢ = tan g, then

2t 1—t2 2dt
CoOSx = —— and d

= e e

Using this substitution, the anti-derivative of rational functions of sine and cosine can be
computed via the integration of rational functions.

sec T

dx.

Example 8.29. Find the indefinite integral J

Rewriting the integrand, we have

sec T cos®
s dr = ——dr.
tan® x sin” x

)
Let ¢ = tan —. Then sinz = i, cosxr = 11 and dx = Ldt, thus
2 1+1¢2 1+1¢2 1+1¢2
Ol oat 1 ((1—)2 1
sec T 17)2 - -3 -1
dr = =—- | ——dt =- t° —2t t)dt
Jtan?’a:x Jﬂl—i—ﬁ 4f t3 4J( +1)
(14¢2)3
1 1 1
= | —=t2-2In|t —t2] C
4[ 5 nlt| + +
1
:§[tan 3 cot22]——ln‘tan ‘—irC

Example 8.30. Find the indefinite integral f dx.
24 sinz



2t
Let t = tan g Then sinx =

- 2dt
T st = 5 and dz = 1+t2,thus
f 1 J J 1 2dt J dt f dt
————dr = 5 = = p 2
2+sinz 24 1 L+ 12 2+t+1 (t+ 57"+ (L)
2 : 2t + 1
= — arctan —=2 + C = — arctan —— + C
V3 NE V3 V3

2 ; <2t T
= —arctan [ — tan —
V3

V3

2+\/%)+c.
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