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Goal: Given a function f defined “near ¢”, find the value of f at x when z is “arbitrarily
close” toc. (b3 - Sn¥c frAPRagE T§ e HENBER| c PEEAL A R 4T B
BE AT Rl )

Notation: When there exists such a value, the value is denoted by lim f(z).
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Example 1.1. Let g(x) = ° 11. Then Dom(g) = R\{1} and g(z) = o + 1 if z # 1.
R

Therefore, the graph of ¢ is given by

x2—1
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Figure 1.1: The graph of function g(x) =

Then (by looking at the graph of g we find that) lim1 g(z) = 2.

1 ifx#2,
0 ife=2.
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Example 1.2. Let f(x) = { The graph of f is given by
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Figure 1.2: The graph of function f(x)
Then (by looking at the graph of f we find that) lin% flz)=1.

Next we give some examples in which the limit of functions (at certain points) do not
exist.
Example 1.3. (L8 % ) Let f(z

1
onm + 2n’

= sin % Then Dom(f) = R\{0}. For the graph of f,
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we note that if z € [, = [ } for some n € N, the graph of f on [, must touch

N
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x =1 and x = —1 once. Therefore, the graph of f looks like
)

Figure 1.3: The graph of function f(x) = sin 1
x

In any interval containing 0, there are infinitely many points whose image under f is
1, and there are always infinitely many points whose image under f is —1. In fact, in any
interval containing 0 and L € [—1, 1] there are infinitely many points whose image under f
is L. Therefore, glcli% f(z) D.N.E. (does not exist).
Example 1.4. Let f(x) = J]
of f is given by

Then f(z) =1if >0, f(z) = =1 if 2 < 0, and the graph

T .

Figure 1.4: The graph of function f(x) = ‘?

By observation (that is, looking at the graph of f), hII(l) f(x) D.N.E.

Example 1.5. (2 82% ) Consider the Dirichlet function

0 ifre@Q,
f(x):{l ifz¢Q,

where Q@ denotes the collection of rational numbers ( 7 2 #) . Then lim f(z) D.N.E. for

all c.



Example 1.6. (2% % ) Let f:(0,00) — R be given by

1 . q
— ifx ==, where p,ge N and (p,q) =1,
fo)=1 b ’ 2 (p: )

0 if z is irrational (& ™ #) .

Then lim f(z) = 0 for all ¢ € (0, o).
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Definition 1.7

Let f be a function defined on an open interval containing ¢ (except possibly at c),

and L be a real number. The statement

lim f(x) = L, read “the limit of f at cis L”,

Tr—C

means that for every € > 0 there exists a § > 0 such that

|f(x) =Ll <e if 0<|z—¢| <.

Explanation: (328 %) F15 |f(z)—L| <ec 2§ f(x)e (L—¢e,L+e) #T1 T &b
e e VARG KRR f(o) » LieBEE? PR - TEMTEApEEL L TR
PARER e>00 - TP AT A e T BgER (UF] e dEERL T 0 k&) B A
AR gk Sl BEHF Y R (L—e, L+e) 2 p o gt ri;,‘?’“% ¢z
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Example 1.8. In this example we show that lir% (x + 1) = 2 using Definition 1.7.
Let € > 0 be given. Define § = ¢. Then § > 0 and if 0 < |z — 1| < §, we have

(z+1)—-2/=jzr—1<d=¢.

One could also pick 0 = % so that if 0 < |z — 1| < ¢,

|(x+1)—2|:|x—1|<5:§<g.
Example 1.9. Show that lin% 2?2 =4. If e = 1, we can choose § = min {\/5— 2,2 — \/g} SO
that § > 0 and if 0 < |z — 2| < § we must have |2? — 4| < 1.

For general €, we can choose § = min{\/m — 2,2 — 44— 5} so that 6 > 0 and if
0 < |z — 2| < § we must have |22 — 4| < e.



Proposition 1.10

Let f, g be functions defined on an open interval containing ¢ (except possibly at ¢),
and f(x) = g(z) if © # c. If lim g(x) = L, then lim f(x) = L.

Proof. Let € > 0 be given. Since lim g(x) = L, there exists § > 0 such that

xr—cC

lg(z) — Ll <e if 0<|xz—¢| <.
Since f(x) = g(z) if © # ¢, we must have if 0 < |z — ¢| < 6,

[f(x) = LI = |g(x) = L| < e. -
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Example 1.11. Let f(z) = =z + 1 and g(x) = B
T

proposition above implies that

Since f(x) = g(x) if z # 1, the

lim g(z) = lim f(z) = 2.

z—1 z—1
1.2 Properties of Limits
Theorem 1.12

Let b, ¢ be real numbers, f, g be functions with lim f(z) = L and lim g(z) = K.

xr—C r—C

1. limb =0, limx = ¢, lim |z| = |¢[;
Tr—C Tr—C

xr—C

2. lim [f(z) + g(x)] = L+ K; (fr2* £ e P& 505 Uefedt £)

r—C

3. lim [f(x)g(x)] = LK; (A 8 05 248 Uensf i)

r—C

f(x)

L .
im = _ifK#0. (FA2&AF 2 F > P 5 ' TE MG LehH )
x—»cg(l’) K * r‘a 1{ ]"B

Example 1.13. Find lin% 2?. By 1 of Theorem 1.12 lin})’x = 3; thus 3 of Theorem 1.12
implies that
lim 2 = (hmq:) (limx) =9.

r—3 r—3 r—

The above equality further shows that

lim 23 = (hm 1:2> <lim :1:) = 27.
r—3 r—3 r—3



In particular, if n is a positive integer, then (by induction) lim 2" = ¢".

Corollary 1.14

Assume the assumptions in Theorem 1.12, and let n be a positive integer.

1. lim [f(2)"] = L™

xr—C

2. If p is a polynomial function, then lim p(z) = p(c).

xr—C
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3. If r is a rational function given by r(z) = P for some polynomials p and ¢,

q()
and ¢(c) # 0, then limr(z) = r(c).

An illustration of why 2 in Corollary 1.13 is correct: Suppose that p(z) = 322 +
5 — 10. Then applying 1-3 in Theorem 1.12, we obtain that

lim p(z) = lim(32% + 5z) — lim(10) = lim(3z* + 5z) — 10

Tr—C r—cC Tr—C xr—cC

= (lim(?))) (lim x2) + (11111(5)) (lim x) —10

r—C r—C Tr—C r—C

=3c® +5c—10 = p(e) .
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