WA~ MAL001-A 3 e (Hf5w)
2018.09.18.

Ching-hsiao Arthur Cheng #% 5%



Definition 1.7

Let f be a function defined on an open interval containing ¢ (except possibly at c),

and L be a real number. The statement

lim f(x) = L, read “the limit of f at cis L”,

Tr—C

means that for each € > 0 there exists a > 0 such that

|f(x) =L <e if 0<|z—¢| <.

Theorem 1.12

Let b, ¢ be real numbers, f, g be functions with lim f(z) = L, lim g(x) = K. Then

r—C

1. limb =0, limx = ¢, lim |z| = |¢[;

r—C Tr—C

2. lim [f(2) & g(2)] = L+ K; (o £ s T8 2304 Uhfrdt £ )

r—cC

3. lim [f(z)g(w)] = LK (A iR T8 302 Lengh ff )

r—C
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Proof. 4. W.L.O.G. (Without loss of generality), we can assume that K > 0 for otherwise
we have lim(—g)(z) = —K > 0 and

Tr—cC

_f lim(-f)(x) _; [

i (5 ) =t (LY == =L

Let € > 0 be given. Since lim g(z) = K, there exist d1, 2 > 0 such that

K
|g(m)—K\<5 if 0<|z—c|<d
and K2
€
_K <

Moreover, since lim f(z) = L, there exists d3 > 0 such that

r—cC

if 0<|z—c <ds.

K
]f(x)—L|<Tg i 0<|r—c|<ds.



Define § = min{dy, d2,03}. Then 6 > 0 and if 0 < |z — ¢| < 0§, we have
flx) L

K@) —Ly(x)] _ 1 |Kf(x) = KL|+|KL — Ly(2)|
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(K5+|L| K2 > e e,
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where we have used e < el if 0 < |z—¢| < ¢ to conclude the inequality. Therefore,
g\r

. fl@) _ L
we conclude that QIELH:; —g @) =% . o

If ¢ > 0 and n is a positive integer, then lim Tw = cn.

r—C

Proof. Let € > 0 be given. Define ¢ = mm{g nc; 6} Then § > 0 and if 0 < |z — | < 4,
we must have
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Therefore, if 0 < |z —¢| < 4,
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which implies that lim x» = ¢n. o
r—C

Theorem 1.16

If f and g are functions such that lim g(x) = K, hm f(z) =L and L = f(K), then

r—C

lim(fog)(z)=1L.

xr—cC




Proof. Let ¢ > 0 be given. Since ilfi f(x) = L, there exists §; > 0 such that
f(x) =Ll <e if 0<|z—K]|<d.
Since L = f(K), the statement above implies that
f(z) =Ll <e if |z—K| <.

Fix such §;. Since lim g(x) = K, there exists § > 0 such that

r—C

lg(z) = K| <d if 0<[r—c|<9d.

Therefore, if 0 < |z —¢| < 6, [(fog)(x) — L| = |f(g9(x)) — L| < e which concludes the

theorem. o

Remark 1.17. In the theorem above, the condition L = f(K) is important, even though
intuitively if g(z) > K as  — c and f(z) — L as x — K then (f o ¢g)(z) should approach
L as x approaches c. A counter-example is given by the following two functions: f is the
function given in Example 1.2 (from the previous lecture) and ¢ is a constant function with
value 2. This example/theorem demonstrates an important fact: intuition could be wrong!
That is the reason why mathematicians develop the -6 language in order to explain ideas

of limits rigorously.

Theorem 1.18: Squeeze Theorem ( % # 732 )

Let f, g, h be functions defined on an interval containing ¢ (except possibly at ¢), and
h(z) < f(z) < g(x) if © # c. If lim h(z) = lim g(z) = L, then lim f(z) exists and is
equal to L.

Proof. Let € > 0. Since lim h(z) = lim g(x) = L, there exist d;,d5 > 0 such that

Tr—C Tr—C

|h(z) =Ll <e if O0<|z—c|<d

and

lg(x) =Ll <e if 0<|z—c| <.
Define 6 = min{dy, d2}. Then § > 0 and if 0 < |z — ¢| <,
L—e<h(z)< flz)<gle)<L+e

which implies that |f(z) — L| < € whenever 0 < |z —¢| < 4. =



Example 1.19. Find lim xil—l

z—0 T

Let f(z) = xfl—l If x # 0,

f()_(\/a:—l—l—l)(\/x#—l%—l)_ 1
= z(vVr+1+1) Ve 141

To see the limit of g, note that

g(z).

liII(l) Vve+1l=1 (by Theorem 1.16);

thus by Theorem 1.12 lim g(x) = % .

z—0



