微積分 MA1001-A 上課筆記(精簡版) 2018.09.18.

Ching-hsiao Arthur Cheng 鄭經教

Definition 1.7

Let f be a function defined on an open interval containing c (except possibly at c), and L be a real number. The statement

$$\lim_{x\to c} f(x) = L$$
, read "the limit of f at c is L ",

means that for each $\varepsilon > 0$ there exists a $\delta > 0$ such that

$$|f(x) - L| < \varepsilon$$
 if $0 < |x - c| < \delta$.

Theorem 1.12

Let b, c be real numbers, f, g be functions with $\lim_{x \to c} f(x) = L$, $\lim_{x \to c} g(x) = K$. Then

- 1. $\lim_{x \to c} b = b$, $\lim_{x \to c} x = c$, $\lim_{x \to c} |x| = |c|$;
- 2. $\lim_{x \to c} \left[f(x) \pm g(x) \right] = L + K$;(和或差的極限等於極限的和或差)
- 3. $\lim_{x\to c} \left[f(x)g(x)\right] = LK$; (乘積的極限等於極限的乘積)
- 4. $\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{L}{K}$ if $K \neq 0$. (若分母極限不為零,則商的極限等於極限的商)

Proof. 4. W.L.O.G. (Without loss of generality), we can assume that K > 0 for otherwise we have $\lim_{x \to c} (-g)(x) = -K > 0$ and

$$\lim_{x \to c} \left(\frac{f}{g}\right)(x) = \lim_{x \to c} \left(\frac{-f}{-g}\right)(x) = \frac{\lim_{x \to c} (-f)(x)}{-K} = \frac{-L}{-K} = \frac{L}{K}.$$

Let $\varepsilon > 0$ be given. Since $\lim_{x \to c} g(x) = K$, there exist $\delta_1, \delta_2 > 0$ such that

$$|g(x) - K| < \frac{K}{2}$$
 if $0 < |x - c| < \delta_1$

and

$$|g(x) - K| < \frac{K^2 \varepsilon}{4(|L| + 1)}$$
 if $0 < |x - c| < \delta_2$.

Moreover, since $\lim_{x\to c} f(x) = L$, there exists $\delta_3 > 0$ such that

$$|f(x) - L| < \frac{K\varepsilon}{4}$$
 if $0 < |x - c| < \delta_3$.

Define $\delta = \min\{\delta_1, \delta_2, \delta_3\}$. Then $\delta > 0$ and if $0 < |x - c| < \delta$, we have

$$\begin{split} \left| \frac{f(x)}{g(x)} - \frac{L}{K} \right| &= \frac{|Kf(x) - Lg(x)|}{K|g(x)|} \leqslant \frac{1}{|g(x)|} \frac{|Kf(x) - KL| + |KL - Lg(x)|}{K} \\ &\leqslant \frac{2}{K} \Big(|f(x) - L| + \frac{|L|}{K} |g(x) - K| \Big) \\ &< \frac{2}{K} \Big(\frac{K\varepsilon}{4} + \frac{|L|}{K} \frac{K^2 \varepsilon}{4(|L| + 1)} \Big) \leqslant \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \,, \end{split}$$

where we have used $\frac{2}{K} \le \frac{1}{|g(x)|}$ if $0 < |x-c| < \delta$ to conclude the inequality. Therefore, we conclude that $\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{L}{K}$ if K > 0.

Theorem 1.15

If c > 0 and n is a positive integer, then $\lim_{x \to c} x^{\frac{1}{n}} = c^{\frac{1}{n}}$.

Proof. Let $\varepsilon > 0$ be given. Define $\delta = \min \left\{ \frac{c}{2}, \frac{nc^{\frac{n-1}{n}}\varepsilon}{2} \right\}$. Then $\delta > 0$ and if $0 < |x - c| < \delta$, we must have

$$x^{\frac{n-1}{n}} + x^{\frac{n-2}{n}}c^{\frac{1}{n}} + x^{\frac{n-3}{n}}c^{\frac{2}{n}} + \cdots + x^{\frac{1}{n}}c^{\frac{n-2}{n}} + c^{\frac{n-1}{n}} \geqslant \frac{n}{2}c^{\frac{n-1}{n}}.$$

Therefore, if $0 < |x - c| < \delta$,

$$\begin{aligned} \left| x^{\frac{1}{n}} - c^{\frac{1}{n}} \right| &= \left| \frac{x - c}{x^{\frac{n-1}{n}} + x^{\frac{n-2}{n}} c^{\frac{1}{n}} + x^{\frac{n-3}{n}} c^{\frac{2}{n}} + \dots + x^{\frac{1}{n}} c^{\frac{n-2}{n}} + c^{\frac{n-1}{n}}} \right| \\ &\leqslant \frac{2}{n} c^{-\frac{n-1}{n}} |x - c| < \frac{2}{n} c^{-\frac{n-1}{n}} \delta \leqslant \frac{2}{n} c^{-\frac{n-1}{n}} \frac{n c^{\frac{n-1}{n}} \varepsilon}{2} = \varepsilon \end{aligned}$$

which implies that $\lim_{x\to c} x^{\frac{1}{n}} = c^{\frac{1}{n}}$.

Theorem 1.16

If f and g are functions such that $\lim_{x\to c} g(x) = K$, $\lim_{x\to K} f(x) = L$ and L = f(K), then

$$\lim_{x \to c} (f \circ g)(x) = L.$$

Proof. Let $\varepsilon > 0$ be given. Since $\lim_{x \to L} f(x) = L$, there exists $\delta_1 > 0$ such that

$$|f(x) - L| < \varepsilon$$
 if $0 < |x - K| < \delta_1$.

Since L = f(K), the statement above implies that

$$|f(x) - L| < \varepsilon$$
 if $|x - K| < \delta_1$.

Fix such δ_1 . Since $\lim_{x\to c} g(x) = K$, there exists $\delta > 0$ such that

$$|g(x) - K| < \delta_1$$
 if $0 < |x - c| < \delta$.

Therefore, if $0 < |x - c| < \delta$, $|(f \circ g)(x) - L| = |f(g(x)) - L| < \varepsilon$ which concludes the theorem.

Remark 1.17. In the theorem above, the condition L = f(K) is important, even though intuitively if $g(x) \to K$ as $x \to c$ and $f(x) \to L$ as $x \to K$ then $(f \circ g)(x)$ should approach L as x approaches c. A counter-example is given by the following two functions: f is the function given in Example 1.2 (from the previous lecture) and g is a constant function with value 2. This example/theorem demonstrates an important fact: intuition could be wrong! That is the reason why mathematicians develop the ε - δ language in order to explain ideas of limits rigorously.

Theorem 1.18: Squeeze Theorem (夾擠定理)

Let f, g, h be functions defined on an interval containing c (except possibly at c), and $h(x) \leq f(x) \leq g(x)$ if $x \neq c$. If $\lim_{x \to c} h(x) = \lim_{x \to c} g(x) = L$, then $\lim_{x \to c} f(x)$ exists and is equal to L.

Proof. Let $\varepsilon > 0$. Since $\lim_{x \to c} h(x) = \lim_{x \to c} g(x) = L$, there exist $\delta_1, \delta_2 > 0$ such that

$$|h(x) - L| < \varepsilon$$
 if $0 < |x - c| < \delta_1$

and

$$|g(x) - L| < \varepsilon$$
 if $0 < |x - c| < \delta_2$.

Define $\delta = \min\{\delta_1, \delta_2\}$. Then $\delta > 0$ and if $0 < |x - c| < \delta$,

$$L - \varepsilon < h(x) \le f(x) \le g(x) < L + \varepsilon$$

which implies that $|f(x) - L| < \varepsilon$ whenever $0 < |x - c| < \delta$.

Example 1.19. Find $\lim_{x\to 0} \frac{\sqrt{x+1}-1}{x}$.

Let
$$f(x) = \frac{\sqrt{x+1} - 1}{x}$$
. If $x \neq 0$,

$$f(x) = \frac{(\sqrt{x+1}-1)(\sqrt{x+1}+1)}{x(\sqrt{x+1}+1)} = \frac{1}{\sqrt{x+1}+1} \equiv g(x).$$

To see the limit of g, note that

$$\lim_{x\to 0} \sqrt{x+1} = 1$$
 (by Theorem 1.16);

thus by Theorem 1.12 $\lim_{x\to 0} g(x) = \frac{1}{2}$.